从单目图像重建3D物体是计算机视觉领域的一个基本问题。高效的重建系统能够开辟广泛的应用领域,包括增强现实、电影制作和制造业。单目3D重建也是一个复杂的逆问题:虽然可见表面可以通过阴影估计,但预测遮挡表面需要强大的3D物体先验知识。我们的领域已经在两个不同的方向上出现了分歧:前馈回归[2、10、19、24、25、27、37、53、54、59-62、65、66、69]和基于扩散的生成[6、8、9、26、29、31-35、39、46-48、68、71]。尽管在两个方向上都取得了重大进展,但每个方向都有根本的局限性。基于回归的模型在粘附图像中的可见表面方面非常有效,并且推理速度通常很快。然而,它们对图像和 3D 之间的双射映射做出了过于简单的假设。这一假设在学习目标中引入了模糊性,导致遮挡区域的表面和纹理估计不佳。另一方面,基于扩散的方法是生成性的,不能预测统计平均值。然而,在建模高分辨率 3D 时,它们在推理时的迭代采样计算效率低下。此外,[27] 等先前的研究表明,扩散生成的 3D 模型与输入图像中可见表面的对齐效果较差。我们如何才能兼顾两者的优点而又避免它们的局限性?有鉴于此,我们提出了 SPAR3D,它将 3D 重建过程分为两个阶段:点采样阶段和网格划分阶段。点采样阶段使用扩散模型生成稀疏点云,然后是网格划分阶段,将点云转换为高度详细的网格。我们的主要思想是将不确定性建模转移到点采样阶段,在此阶段,点云的低分辨率允许快速迭代采样。随后的网格划分阶段利用局部图像特征将点云转换为具有高输出保真度的详细网格。减少点云网格划分的不确定性进一步促进了逆渲染的无监督学习,从而减少了纹理中的烘焙照明。我们的两阶段设计使 SPAR3D 的性能显著优于以前的回归方法,同时保持了高计算效率和对输入观测的保真度。我们方法的一个关键设计选择是使用点云来连接两个阶段。为了确保快速重建,我们的中间表示需要轻量级,以便能够高效生成。另一方面,它应该为网格划分阶段提供足够的指导。这
增材制造,或称三维 (3-D) 打印,正受到前所未有的关注。增材制造是一套新兴技术,它通过增材工艺直接从数字模型制造三维物体,通常通过沉积和“就地固化”连续的聚合物、陶瓷或金属层。2 与涉及减法(例如切割和剪切)和成型(例如冲压、弯曲和模制)的传统制造工艺不同,增材制造将材料连接在一起以制造产品。关于这一新兴行业的文章数量从 2011 年的 1,600 篇增加到 2012 年的 16,000 篇。3 增材制造市场包括全球所有增材制造产品和服务,同样显示出令人印象深刻的增长:从 2011 年的 17 亿美元增长到 2012 年的 22 亿美元,增幅为 28.6%。4 不断发展和流动的增材制造技术正在塑造产品开发和制造的未来。
与经典电子不同,量子态以难以测量而著称。从某种意义上说,电子的自旋只能处于两种状态之一,即向上或向下。通过简单的实验可以发现电子处于哪种状态,对同一电子的进一步测量将始终证实这一答案。然而,这幅图景的简单性掩盖了电子复杂而完整的本质,电子总是处于两种状态之一,而状态会根据测量方式而变化。量子态断层扫描是一种使用许多相同粒子的集合来完全表征任何量子系统(包括电子自旋)的过程。多种类型的测量可以从不同的特征基重建量子态,就像经典断层扫描可以通过从不同的物理方向扫描三维物体来对其进行成像一样。在任何单一基础上进行额外的测量都会使该维度更加清晰。本文主要分为两部分:层析成像理论(第一部分和第二部分)和光子系统的实验层析成像
人工智能的发展提出了一个关于人类智能的基本问题:人类推理是通过应用从丰富的先前经验中获得的任务特定知识来最好地模拟的,还是基于领域通用的心理表征操纵和比较?我们针对视觉类比推理的情况来解决这个问题。使用熟悉的三维物体(汽车及其零件)的真实图像,我们系统地操纵视觉类比问题中的视点、零件关系和实体属性。我们将人类的表现与两种最近的深度学习模型(孪生网络和关系网络)的表现进行了比较,这两种模型直接经过训练来解决这些问题并将其任务特定知识应用于类比推理。我们还通过将领域通用的映射程序应用于汽车及其零部件的学习表征,开发了一个使用基于零件的比较 (PCM) 的新模型。在四项类比(实验 1)和开放式类比(实验 2)中,领域通用的 PCM 模型(而非特定任务的深度学习模型)在关键方面产生了与人类推理者相似的性能。这些发现证明,通过将大数据的深度学习应用于特定类型的类比问题,不太可能实现类似人类的类比推理。相反,人类确实(并且机器可能)通过学习对多个任务有用的结构信息进行编码的表示,再加上关系相似性的高效计算来实现类比推理。
全球能源需求快速增长与气候变化之间的矛盾是一个巨大的挑战,需要重大的科技创新。先进制造可以大大减少温室气体排放和污染,并缩短产品上市时间。增材制造是一种通过直接从计算几何模型逐层沉积材料来制造三维物体的过程,它在很大程度上消除了传统制造方法的设计和制造限制。作为一种新兴的变革性技术,增材制造技术已在多个能源领域显示出节能的潜在优势。为了进一步增加其在核能和可再生能源中的应用,需要进行基础研究以克服过程监控、尺寸精度和部件结构完整性方面的一些关键挑战。增材制造工艺及其产品的验证和鉴定对于满足各种能源生产、转换和存储系统中关键部件的高标准至关重要。在这篇综述文章中,我们总结了尖端增材制造技术的现状及其在核能、电池、燃料电池、石油和天然气领域的应用。我们还概述了充分发挥增材制造技术潜力所需的主要挑战和基础研究。本综述提供了通过应用创新的增材制造技术应对全球能源挑战的重要讨论和前景。
摘要 3D 打印是一种使用添加工艺制作三维物体的过程,其中逐层连续铺设以创建完整物体。全球各地的公司都在积极试行和利用 3D 打印技术的固有优势。今天,3D 打印可以通过更好的创造力、可定制性和可持续性彻底改变食品创新和生产。在本文中,我们进行了文献综述,以探讨 3D 打印在食品行业的现有技术和应用,包括其优势、潜在影响以及快速增长的障碍。最后,本文探讨了 3D 打印在食品行业的未来。我们的讨论为 3D 食品打印的变革潜力带来了新的见解,并为从业者提供了一种发现更有效的技术采用策略的方法。 关键词:3D 食品打印;打印精度;烹饪打印;个性化营养;定制食品设计;糖果市场 利益披露 作者报告没有利益冲突。设计/方法/方法 我们进行了文献综述,并搜索了标题、关键词或摘要中包含“3D 打印”、“3D 食品打印”、“烹饪打印”、“定制食品设计”和“个性化营养”字样的论文。这些文章被选中进行评论。我们对过去工作的回顾侧重于确定 3D 打印在食品行业中的应用领域。论文选自 EBSCO 应用科学与技术资源、Web of
摘要本文中介绍的实验研究是我们系列实验中的第一项,旨在测试儿童在感知这些对象的计算机模型(虚拟对象)时依赖于他们所知的真实物理对象的特征的假设。选择该维度是第一个研究的特征。维度是一种偏anmodal特征,也就是说,它可以根据各种模态(视觉或触觉)的感官信息来感知。进行了一项试验实验研究,以检验假设:学龄前儿童在片剂计算机屏幕上作用(在二维表面上)时,是否将虚拟的三维物体视为三维对象。4-5岁的20名儿童参加了实验。每个孩子都参加了五项实验测试:主测试1-在平板电脑屏幕上使用虚拟体积对象的动作(通过触摸移动),示例2-查看平板电脑屏幕上体积对象的图像,而无需与之执行操作。还进行了三个其他带有实际体积对象(视觉,触觉,视觉热量)的测试,以评估儿童的感知发育。每次测试后,仅根据触觉信息提供孩子,以在四个对象之间选择一个参考对象:两个三维和两个平面。94.1%的成功识别真实对象的儿童中,尽管视觉和触觉信息之间的不匹配有效,但样本1之后将虚拟对象识别为三维。关键字:虚拟3D图像,视觉热感知,视觉热差结果与在对三维对象的大小和形状中最佳整合在对更可靠的信息方面的大小和形状中最佳整合的想法是一致的。在样本2中,在缺少平板电脑屏幕上图像的可能性的情况下,随着三维对虚拟三维对象的识别相关的误差次数显着增加(33.3%)。
确定施加载荷的位置点,以避免航空航天应用中使用的薄截面发生扭曲。 理解区分曲梁中中性轴和质心轴的概念。 理解为分析受扭转的非圆形杆而开发的类比模型,以及分析滚动体之间产生的应力和三维物体中的应力。 UNIT-I:应力分析:点的应力状态、任意平面上的应力分量、主应力、应力不变量、莫尔圆、最大剪切平面、八面体应力、平面应力状态、平衡微分方程、边界条件。应变分析:点附近的变形、点的应变状态、剪应变分量的解释、应变和主应变的变换、兼容条件。平面应变状态。线性应力-应变-温度关系:内能密度和互补内能密度。各向异性、正交各向异性和各向同性弹性的胡克定律。各向同性材料的热弹性方程 UNIT-II 剪切中心:轴对称和非对称截面的弯曲轴和剪切中心-剪切中心。薄壁截面的剪切应力、箱梁的剪切中心非对称弯曲:非对称弯曲梁的弯曲应力、非对称弯曲导致的直梁挠度。 UNIT-III:曲梁理论:温克勒-巴赫周向应力公式 – 局限性 – 校正系数 – 曲梁的径向应力 – 闭环承受集中和均匀载荷 – 链环中的应力。第四单元:扭转:线性弹性解,一般棱柱形杆——实心截面,如圆形、椭圆形、三角形和矩形,普朗特弹性膜(皂膜)类比;窄矩形截面,空心薄壁扭转构件,多连通截面。第五单元:接触应力:介绍,确定接触应力的问题,接触应力解所基于的假设;主应力表达式;计算接触应力的方法,点接触物体的挠度;两个物体在窄矩形区域接触的应力(线接触)垂直于面积的载荷,两个物体线接触的应力,垂直于和切向于接触面积的载荷。
MM-102:工程材料概论工程材料简介、其范围和在工业发展中的作用、工程材料的原材料:其可用性和需求、工程材料基础:原子键、金属晶体结构、聚合物、陶瓷、复合材料和半导体材料简介。金属、聚合物、陶瓷、复合材料和半导体材料的加工、特性和应用。新型工程材料简介,例如形状记忆材料、智能材料、电气、磁性和光学材料。航空航天和运输工业的材料。实验室活动 ME-101:工程力学粒子静力学:平面上的力;牛顿第一定律,自由体图;空间中的力(矩形分量);空间中粒子的平衡。粒子运动学:粒子的直线和曲线运动;速度和加速度的分量;相对于平动框架的运动。粒子动力学:牛顿第二定律;动态平衡;直线和曲线运动;功和能量;粒子的动能;功和能量原理;能量守恒定律;冲量和动量;冲量和动量守恒定律;直接和斜向冲击;角动量守恒定律。刚体:力的等效系统;传递性原理;力的矩;偶;瓦里尼翁定理。三维物体的重心和体积的质心。转动惯量、回转半径、平行轴定理。刚体平衡:自由体图;二维和三维平衡;支撑和连接的反应;二力和三力物体的平衡。刚体运动学:一般平面运动;绝对和相对速度和加速度。刚体的平面运动:力和加速度;能量和动量;线动量和角动量守恒定律。摩擦:干摩擦定律;摩擦角;楔子;方螺纹螺钉;径向和推力轴承;皮带摩擦。结构分析:内力与牛顿第三定律;简单和空间桁架;接头和截面;框架和机器。电缆中的力。PH-122:应用物理学简介:科学符号和有效数字。实验测量中的误差类型。不同系统中的单位。图形技术(对数、半对数和其他非线性图形)矢量:矢量回顾、矢量导数。线和表面积分。标量的梯度。力学:力学的极限。坐标系。恒定加速度下的运动、牛顿定律及其应用。伽利略不变性。匀速圆周运动。摩擦力。