为控制流行病,我们急需一个能够快速生成多种候选疫苗的“通用”平台。以严重急性呼吸综合征冠状病毒 2 为模型,我们通过 CRISPR 工程改造 T4 噬菌体开发了这样一个平台。通过将各种病毒成分整合到噬菌体纳米颗粒结构的适当区室中,设计了一系列候选疫苗。这些包括基因组中可表达的刺突基因、作为表面装饰的刺突和包膜表位以及包装核心中的核衣壳蛋白。在动物模型中发现,装饰有刺突三聚体的噬菌体是最有效的候选疫苗。在没有任何佐剂的情况下,这种疫苗可刺激强大的免疫反应,包括 T 辅助细胞 1 (TH 1) 和 TH 2 免疫球蛋白 G 亚类,阻断病毒-受体相互作用,中和病毒感染,并提供针对病毒攻击的完全保护。这种新的纳米疫苗设计框架可能允许在未来快速部署针对任何新出现的病原体的有效无佐剂噬菌体疫苗。
Pangenome参考文献通过存储一组代表性的单倍型及其对齐方式来解决参考基因组的偏见,通常是作为图形。由变体呼叫者确定的备用等位基因可用于构造pangenome图,但是长阅读测序的进步导致广泛可用的高质量的分阶段组件。直接从组件中构造pangenome图,而不是变体调用,它利用该图在不同尺度上表示变化的能力。在这里,我们介绍了直接从全基因组比对创建pangenomes的Mimigraph-Cactus pangenome管道,并证明了其从人类Pangenome参考联盟中扩展到90个人类单倍型的能力。该方法构建包含所有形式的遗传变异的图形,同时允许使用当前的映射和基因分型工具。我们衡量用于分析的参考基因组的质量和完整性的效果,并表明,使用端粒到三聚体联盟的CHM13参考可以提高我们方法的准确性。我们还展示了果蝇的构造Melanogaster Pangenome。
叶:多酚,尤其是类黄酮(黄酮醇的糖苷)和单宁(原腺苷蛋白和ellagitannins)。Derivatives of flavonols and flavan-3-ols as well: kaempferol 3-O-beta- glucopyranoside, quercetin 3-O-beta-D-glucopyranoside, quercetin 3-O-beta-D-rutinoside, myricetin 3- O-α-L-rhamnopyranoside, myricetin 3-O-BETA-D-半乳糖苷,香豆素埃斯甲蛋白(Demetzos等,1990);来自Kaempferol,槲皮素,apiginin和naringenin,scopoletin(6-o-甲基-7-羟基酸乳蛋饼)的类黄酮衍生物(Demetzos等,1990; Danne等,1993; Petereit et al。; Petereit等,1990; Petereit等,1991)。已经从Cistus Incanus Herb中分离出了两个原蛋白蛋白三聚体; Gallocatechin-(4α→6)-Gallocatechin-(4α→8)-Gallocatechin和epigalocatechin-3-O-Gallate-(4ß→8)-Epigallocatechin-3-O- Gallate-(4ß→8)-Gallocatechin。也隔离了更丰富的原动蛋白素低聚物。聚合物的平均分子量估计约为7至8叶酸3-醇单元,其比率为procyanidin:prodelphinidin单元为1:5,其中一些单位是通过长石衍生的。(Mansoor等人2016)。最近,通过光谱证据分离并确定了一种新的Ellagitannin cistusin以及众所周知的Terflavin A和Punicalagin(Fecka et al。2020)。
流感病毒菌株之间的抗原变异性对开发广泛的保护性,持久的疫苗构成了重大挑战。当前的年度疫苗靶向特定菌株,需要准确预测有效中和。尽管系统发育群体之间的序列多样性,但血凝素(HA)头域的结构仍然高度保守。利用这种保护,我们设计的跨组嵌合具有结合远处菌株的抗原表面。通过结构引导的受体结合位点(RBS)残基的移植,我们在H1 HA支架上显示了H3 RBS。这些嵌合免疫原子会引起能够中和底菌株和远端菌株的跨组多克隆反应。此外,嵌合体整合了异三聚体免疫原子,增强了模块化疫苗的设计。这种方法使包含各种应变段能够产生广泛的多克隆响应。将来,这种模块化免疫原子可以用作评估免疫力优势和完善免疫策略的工具,从而提供了桥接和增强免疫力患者免疫反应的潜力。该策略有望推进普遍的流感疫苗开发。
由于光电中的许多应用,有机材料中的能量转移进行了广泛的研究。分子组件内的电子和振动弛豫可以受到堆叠布置或添加将它们串通的骨架的添加的影响。在这里,我们介绍了二酰亚胺单体的光激发动力学以及面对面堆叠的二聚体和三聚体的计算研究。通过使用非绝热激发态分子动力学模拟,我们表明非辐射弛豫与堆叠分子的数量一起加速。这种效应是由影响其相应非绝热耦合的状态之间的能量分解的差异来解释的。此外,我们对振动动力学的分析表明,通过参与堆叠系统松弛的不同圆锥形交叉点的通道激活了积极的反馈机制。此效果涉及一组狭窄的振动正常模式,该模式通过提高其振动动力学的效率来加速过程。相比之下,由于其参与分子堆叠布置的振动动力学,增加了生物学启发的主链降低了松弛率。我们的结果表明,堆叠布置和常见的骨干是调节基于二酰亚胺的系统和其他分子聚集体的电子和振动松弛效率的策略。简介
该计划已知GPCR介导的信号传导是通过激活许多信号因子(包括异三聚体G蛋白(注3),GPCR激酶(GRK)(注4)和β-arrestin(注5)(图1)来进行的(图1)。该研究小组创建了大量使用CRISPR-CAS9方法(注6)(一种基因组编辑技术)在GPCR信号传导因子上不足的细胞(图2)。使用这些细胞的研究表明,通过GPCR信号中的β-arrestin,GPCA蛋白的选择性激活以及通过GRK调节GPCR活性的信号传导。这篇审查论文(包括尖端的研究报告)解释了遗传缺陷培养的细胞揭示的信号转导因子的新功能,以及有关多种类型的基因缺陷培养的细胞的详细信息。此外,我们提出了一种使用遗传缺陷培养细胞(图3)和新药理工具的开发来对疾病涉及的信号转导因子的功能分析方法。未来的发展本综述希望,随着使用基因缺陷型细胞的分析,将来将进一步加速GPCR研究。此外,通过创建缺乏更多信号转导因子并在具有不同特性的培养细胞系中建立基因缺陷细胞的细胞,预计它将导致涉及GPCR信号转导因子的疾病机制,并涉及科学进步。
复制蛋白A(RPA)是单个链DNA(ssDNA)结合蛋白,可协调各种DNA代谢过程,包括DNA复制,修复和重组。RPA是一种异三聚体蛋白,具有六个功能性寡糖/寡核苷酸(OB)结构域和柔性接头。 灵活性使RPA能够采用多种配置,并被认为可以调节其功能。 在此,使用单分子共焦荧光显微镜与光学镊子和粗粒细粒的分子动力学模拟结合使用,我们研究了在张力下ssDNA上单个RPA分子的扩散迁移。 在3 pn张力和100 mM KCl时,扩散系数D是最高(20,000个核苷酸2 /s),当张力或盐浓度增加时,则显着降低。 我们将张力效应归因于段转移,这受到DNA拉伸和盐效应的阻碍,降低了RPA-SSDNA的结合位点大小和相互作用能量的增加。 我们的综合研究使我们能够估计通过通过RPA上多个结合位点在DNA上的遥远位点的短暂桥接发生的细胞分段转移事件的大小和频率。 有趣的是,RPA三聚芯的删除仍然允许大量的ssDNA结合,尽管降低的接触面积使RPA的移动性增加了15倍。 最后,我们表征了RPA拥挤对RPA迁移的影响。 这些发现揭示了如何重塑高亲和力RPA-SSDNA相互作用以产生访问,这是多个DNA代谢过程中的关键步骤。RPA是一种异三聚体蛋白,具有六个功能性寡糖/寡核苷酸(OB)结构域和柔性接头。灵活性使RPA能够采用多种配置,并被认为可以调节其功能。在此,使用单分子共焦荧光显微镜与光学镊子和粗粒细粒的分子动力学模拟结合使用,我们研究了在张力下ssDNA上单个RPA分子的扩散迁移。在3 pn张力和100 mM KCl时,扩散系数D是最高(20,000个核苷酸2 /s),当张力或盐浓度增加时,则显着降低。我们将张力效应归因于段转移,这受到DNA拉伸和盐效应的阻碍,降低了RPA-SSDNA的结合位点大小和相互作用能量的增加。我们的综合研究使我们能够估计通过通过RPA上多个结合位点在DNA上的遥远位点的短暂桥接发生的细胞分段转移事件的大小和频率。有趣的是,RPA三聚芯的删除仍然允许大量的ssDNA结合,尽管降低的接触面积使RPA的移动性增加了15倍。最后,我们表征了RPA拥挤对RPA迁移的影响。这些发现揭示了如何重塑高亲和力RPA-SSDNA相互作用以产生访问,这是多个DNA代谢过程中的关键步骤。
摘要 迫切需要开发疫苗来预防 SARS-CoV-2 感染并减轻 COVID-19 大流行。在这里,我们开发了两种基于改良安卡拉痘苗 (MVA) 的疫苗,它们表达在融合前状态稳定的膜锚定全长刺突蛋白 (MVA/S) 或形成三聚体并分泌的刺突的 S1 区 (MVA/S1)。两种免疫原都含有受体结合结构域 (RBD),这是抗体介导的中和的已知靶标。用 MVA/S 或 MVA/S1 免疫后,两种刺突蛋白重组体均诱导了针对纯化的全长 SARS-CoV-2 刺突蛋白的强 IgG 抗体。MVA/S 对纯化的 RBD、S1 和 S2 诱导了强烈的抗体反应,而 MVA/S1 诱导了对 RBD 区域外的 S1 区域的抗体反应。两种疫苗均在肺部诱发抗体反应,并与支气管相关淋巴组织的诱导有关。接种 MVA/S 而非 MVA/S1 疫苗的小鼠对 SARS-CoV-2 产生了强大的中和抗体反应,这与 RBD 抗体结合滴度密切相关。从机制上讲,S1 与 ACE-2 的结合很强,但在室温下长时间预孵育后会降低,这表明 RBD 会随时间发生变化。这些结果表明 MVA/S 是针对 SARS-CoV-2 感染的潜在候选疫苗。
摘要简介:2019年冠状病毒疾病(Covid-19)大流行,是由严重的急性呼吸综合征冠状病毒2(SARS-COV-2)引起的,导致了全世界的显着发病率和死亡率。随着SARS-COV-2进入地方性地位,疫苗接种仍然是保护全球个人,社会和经济体的健康的关键因素。涵盖的区域:NVX-COV2373(Novavax,Gaithersburg,MD)是一种由SARS-COV-2 Spike-2尖峰三聚体纳米颗粒组成的重组蛋白疫苗,该疫苗由基于皂苷的Matrix-M™佐剂制成(Novavax,Gaithersburg,Gaithersburg,MD)。NVX-COV2373被授权在美国和许多其他国家 /地区≥12岁的成年人和青少年紧急使用。专家意见:在临床试验中,NVX-COV2373显示出可耐受性的反应性和有利的安全剖面,其特征是大多数持续时间的轻度至中度不良事件以及与安慰剂看到的那些相当的严重和严重不良事件的低率。两剂量初次疫苗接种系列导致抗尖峰蛋白免疫球蛋白G,中和抗体滴度和细胞免疫反应的强大增加。NVX-COV2373疫苗接种与针对严重疾病的COM保护有关,并且针对症状性疾病的保护率很高(90%),包括由SARS-COV-2变体引起的症状性疾病。此外,NVX-COV2373辅助重组蛋白平台提供了一种解决Covid-19-19疫苗接种犹豫和全球疫苗资产问题的方法。
高粱是发达国家和世界其他地方的主食的一种饲料/工业作物。这项研究评估了高粱迷你核心收集天数,在7-12个测试环境中,多天开花(DF),生物质,植物高度(pH),可溶性固体含量(SSC)和果汁重量(JW)和DF和pH的高粱参考集。我们还分别在迷你核心收集和参考集中分别进行了6 094 317和265 500单核苷酸多态性标记的全基因组缔合映射。在迷你核心面板中,我们确定了DF的三个定量性状基因座,两个用于JW,一个用于pH,一个用于生物质。在参考集面板中,我们确定了6号染色体上pH的另一个定量性状基因座,该特性也与迷你核心面板中的生物质,DF,JW和SSC有关。从该基因座中选择的三个基因的转基因研究表明,当在高粱和甘蔗中过表达时,Sobic.006G061100(SBSNF4-2)增加了生物质,SSC,JW和pH,并且在跨基因高粱中延迟开花。SBSNF4-2编码进化保守的AMPK/SNF1/SNRK1异三聚体配合物的γ亚基。SBSNF4-2及其直系同源物将在植物中生物量和糖产量的遗传增强中有价值。