今天,与过去相比,供应链(SC)网络面临更多的干扰。虽然很少有干扰,但它们可能会产生灾难性的长期经济或社会影响,并且恢复过程可能很漫长。这些在COVID-19大流行期间观察到的,这些可能会极大地影响SC并使之脆弱。对这些问题的识别已通过发展弹性,敏捷和自适应SC来促使人们对改善破坏管理的需求。本研究的目的是引入评估框架,以确定和评估供应链弹性(SCR)的决定因素(SCR)。为了分析经验数据,通过间隔相关性(模糊评论家)和模糊技术来分析经验数据,以相似性(模糊的topsis)(模糊topsis)进行了模糊技术。模糊的评论家方法用于识别关键决定因素,并应用模糊的Topsis方法来确定某些现实世界中的相对排名。最后,通过制定命题,提出了解释性三重螺旋框架来实现SCR。这项研究在方法论和含义上都引人注目。通过在评估决定因素的SCR和借助解释性三重螺旋框架来建立有弹性SC的决定因素和应用这些决定因素的评估中引入模糊评论家和模糊的上衣的新型组合,为SCR领域提供了独特而有价值的贡献。关键发现表明“响应能力”,然后是“管理协调和信息集成”是实现SCR的最重要决定因素。这项工作的结果可以帮助人士以提高敏捷性和适应性来实现SCR。
基于运动的分层方程(HEOM)计算,我们从理论上研究了连接到两个储层的三角形三量子点(TTQD)环的相应控制。我们最初通过添加偏置电压并进一步调节量子点之间的耦合强度来证明,偏置引起的手性电流将通过顺时针向逆时针方向转换,并触发前所未有的有效霍尔角。转换非常快速,相应的特征时间为80-200 ps。另外,通过添加磁性弹力来补偿原始系统中的手性电流,我们阐明了施加的磁性环与浆果相之间的关系,该相位可以直接测量手性电流并揭示磁电耦合关系。
摘要:在本文中,我们研究了三重扩散对 MHD Casson 流体通过垂直渗透壁的混合对流粘性流动的影响,并对流边界层进行了数值计算。为三重扩散边界层流建立了控制方程模型并推导了控制方程,以研究流体在热导率和溶质扩散率影响下的性质。使用有效且合适的相似变换,将高度非线性耦合的 PDE 简化为一系列耦合的 ODE,并借助 Runge Kutta-Fehlberg 积分方案通过 Shooting 技术进行求解。为了了解流体特性的行为,对控制流动的无量纲参数进行了数值计算,并通过物理系统的渗透率、对流参数、Casson 参数和浮力比参数等图表进行了展示。在缺少一些无量纲参数的情况下,将目前的发现与以前发表的研究进行了比较,以验证我们的数值方案,并发现其与小数点后六位的精度高度一致。
评估在跑道运行方面使用单一频率进行通信,以提高机场活动区内行动者的态势感知能力。主要目标: - 了解欧洲目前在这方面的情况,确定目前正在使用的各种概念; - 证实实施“三重一”概念的安全效益,并确定实施的先决条件; - 确定未实施三重“一”概念的运营或其他原因; - 确定其他可提高态势感知能力且不基于“三重一”概念的解决方案和最佳实践; - 初步评估引入“三重一”或其他概念可能对受影响的利益相关者产生的影响。
这样的三重(x,y,z)称为毕达哥拉斯三重。尤其是x,y和z是coprime,则将三重称为原始的毕达哥拉斯三重。毕达哥拉斯的三元组应归功于希腊数学家毕达哥拉斯(Pythagoras),他居住在公元前6世纪毕达哥拉斯是哲学学校的创始人,称为毕达哥拉斯主义,毕达哥拉斯的三元组通常与他的发现和教义有关。根据传说,毕达哥拉斯和他的追随者在研究数字和音乐比例的同时,对毕达哥拉斯的三人组感兴趣。据说,他们注意到音乐弦长的某些组合产生了谐波声音,而这些组合对应于毕达哥拉斯的三元组。但是,重要的是要注意,毕达哥拉斯本人并未发现或介绍毕达哥拉斯的三元。古代
第 2 部分:宗旨 – 供应链协会有三重使命,使我们能够实现我们的宗旨:帮助来自不同背景的学生在职业和学术追求中取得成功。我们的三重使命是:
由于带注释的样本稀缺,病理性脑损伤在图像数据中的复杂表现对监督检测方法提出了挑战。为了克服这个困难,我们将重点转移到无监督异常检测。在这项工作中,我们专门使用健康数据训练所提出的模型,以识别测试期间未见的异常。这项研究需要调查基于三元组的变分自动编码器,以同时学习健康脑数据的分布和去噪能力。重要的是,我们纠正了先前基于投影的方法中固有的一个误解,该误解依赖于这样的假设:图像内的健康区域在重建输出中将保持不变。这无意中暗示了病变图像和无病变图像在潜在空间表示上存在相当大的相似性。然而,这种假设可能并不成立,特别是由于病变区域强度对投影过程的潜在重大影响,特别是对于具有单一信息瓶颈的自动编码器。为了克服这个限制,我们将度量学习与潜在采样分离。这种方法确保病变和无病变输入图像都投影到相同的分布中,特别是无病变投影。此外,我们引入了一个语义引导的门控交叉跳过模块来增强空间细节检索,同时抑制异常,利用解码器更深层中存在的健壮健康大脑表示语义。我们还发现,将结构相似性指数测量作为额外的训练目标可以增强所提模型的异常检测能力。
下面。根据组织学通过肿瘤评分定量肿瘤体积。雷帕霉素(0.493 mm 3),MLN0128(2.514 mm 3),RMC-4627(0.59 mm 3)和RMC-6272(0.50 mm 3)的肿瘤体积显着降低了(0.59 mm 3)(0.50 mm 3),比车辆对照组(10.32 mm 3)(10.32 mm 3)在10-MONTH y-onts y-onts tsss-j-k-j-j-j-j-j-k y/j/j/j/j pers ever ever the efts e 10 month ys/j/j/j/j efts efts ever tw Weeks efts efts eft SSC 2+ - -1 a/j/j/j。治疗后两个月,RMC-4627(5.05 mm 3)和RMC-6272(2.27 mm 3)治疗均显示出比Rapamycin(14.7 mm 3)和MLN0128(12.18 mm 3)的肿瘤再生(14.7 mm 3)。每个符号代表一个肾脏;每组n≥6个肾脏。
Protocol Contributors Chief Investigator: Jean Abraham Trial Geneticist: Marc Tischkowitz Trial Statisticians: Nikos Demiris and Alimu Dayimu Trial Coordinators: Louise Grybowicz, = Erdem Demir, Karolina Lazarowicz, Camila Maidadepontes and Sonia Chukwuka Trial Pharmacist: Anita Chhabra Lead pathologist / UK Central Trial Pathologist: Elena Provenzano试验临床研究研究员:Karen Pinilla和Rebecca Lucey试验管理小组协议贡献者对遗传学感兴趣的医学肿瘤学家:Ellen Copson其他医学肿瘤学家:Anne Armstrong,Karen McAdam和Rebecca Roylance。主要病理学家 /英国中央试验学家:Elena Provenzano试验委员会试验管理小组首席研究人员独立外部临床医生(主席):Charlie Gourley独立数据和安全监测委员会3独立外部临床医生:Judy Garber(主席)(主席),Lajos Pusztai和Rita Nanda 1独立外部统计学和Brady Driviaf:Mark Bradiia
抽象背景:三重阴性乳腺癌(TNBC)是一种侵袭性肿瘤,其死亡率极高,由于缺乏有效的治疗靶标。作为与肿瘤发生和肿瘤转移相关的粘附分子,分化44(也称为CD44)在TNBC中过表达。此外,特定的透明质酸类似物,即壳聚糖寡糖(CO)可以有效地获得CD44。在这项研究中,设计了一个共涂层的脂质体,将光杀手(HPPH)作为660 nm光介导的光敏剂和Evofofosfamide(也称为TH302),为缺氧激活的前药。获得的脂质体可以通过荧光成像来帮助诊断TNBC,并通过协同光动力疗法(PDT)和化疗产生抗肿瘤治疗。结果:与非靶向的脂质体相比,靶向脂质体在体外表现出良好的生物相容性和靶向能力。在体内,靶向脂质体具有更好的荧光成像能力。此外,载有HPPH和TH302的脂质体比在体外和体内的其他单一疗法组表现出明显更好的抗肿瘤作用。结论:令人印象深刻的协同抗肿瘤效应,加上优质的荧光成像能力,良好的生物相容性和较小的副作用,使脂质体赋予了诊断和过表达癌症治疗的未来转化研究的潜力。关键字:三重阴性乳腺癌,光动力疗法,壳聚糖寡糖,CD44,脂质体