室温钠硫 (RT Na-S) 电池具有高理论能量密度和低成本的特点,最近因潜在的大规模储能应用而受到广泛关注。然而,多硫化钠的穿梭效应仍然是导致循环稳定性差的主要挑战,这阻碍了 RT Na-S 电池的实际应用。在此,设计了一种多功能混合 MXene 中间层以稳定 RT Na-S 电池的循环性能。混合 MXene 中间层包括大尺寸的 Ti 3 C 2 T x 纳米片内层,随后是玻璃纤维 (GF) 隔膜表面的小尺寸 Mo 2 Ti 2 C 3 T x 纳米片外层。大尺寸的 Ti 3 C 2 T x 纳米片内层为可溶性多硫化物提供了有效的物理阻挡和化学限制。小尺寸的 Mo 2 Ti 2 C 3 T x 外层具有出色的多硫化物捕获能力,并加速了多硫化物转化的反应动力学,这是由于其优异的电子电导率、大的比表面积和富含 Mo 的催化表面。因此,采用这种混合 MXene 夹层改性玻璃纤维隔膜的 RT Na-S 电池在 1 C 下在 200 次循环中提供稳定的循环性能,容量保持率提高了 71%。这种独特的结构设计为开发高性能金属硫电池的基于 2D 材料的功能夹层提供了一种新颖的策略。
摘要最近,通过实验证明,带有旋转的分子具有巨大的潜力作为量子信息处理的基础,这是由于它们具有可调性,可移植性和可伸缩性的实质性优势。在这里,我们提出了一个理论模型,基于一个含有一个自由基的分子中开放量子系统的理论,该理论可以与由于光激发和间隔系统交叉而与分子的另一部分相互作用。初始状态是自由基1 2 -spin的经典混合物,自由基和三重态之间的交换相互作用会产生旋转相干状态,该状态有可能用于Qubit -Qutrit量子纠缠栅极。我们对时间分辨的电子顺磁共振光谱的计算与高温下自由基分子的相关实验结果表现出良好的定性一致(〜77 K(〜77 K,液氮的沸点)。因此,这项工作奠定了一个固体理论基石,用于在根部含有的分子材料中进行光学驱动的量子栅极操作,旨在用于高温量子信息处理。
电子邮件:santhosh.bandham@gmail.com摘要:本研究调查了云计算如何有助于可持续发展。 云计算(CC)是一种变革性的技术,具有降低企业的环境影响,刺激经济增长并提高社会发展的能力。 该研究深入研究了云计算的环境优势,包括能源效率,减少的碳排放以及整合可再生能源的可能性。 此外,它还探讨了经济和社会优点,例如节省成本,提高生产率和增强技术的访问。 本文通过强调与为可持续发展采用云计算相关的潜在挑战和机遇,从而确定了未来的研究和政策行动的关键领域。 关键字:云计算,可持续发展,环境,经济,社会福利可持续性。电子邮件:santhosh.bandham@gmail.com摘要:本研究调查了云计算如何有助于可持续发展。云计算(CC)是一种变革性的技术,具有降低企业的环境影响,刺激经济增长并提高社会发展的能力。该研究深入研究了云计算的环境优势,包括能源效率,减少的碳排放以及整合可再生能源的可能性。此外,它还探讨了经济和社会优点,例如节省成本,提高生产率和增强技术的访问。本文通过强调与为可持续发展采用云计算相关的潜在挑战和机遇,从而确定了未来的研究和政策行动的关键领域。关键字:云计算,可持续发展,环境,经济,社会福利可持续性。
iCAP MTX ICP-MS 可确保最高水平的分析效率,同时易于使用,可显著减少员工培训时间。该仪器只需极少的维护即可实现高效运行。Thermo Scientific™ Qtegra™ 智能科学数据解决方案 (ISDS) 软件可无缝控制您的工作流程,从最初的仪器设置到日常操作再到报告结果。通过强大而可靠的自动化流程满足准确分析和可追溯数据的需求。
。CC-BY 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2023 年 4 月 17 日发布。;https://doi.org/10.1101/2023.04.17.537130 doi:bioRxiv 预印本
此工具包包括实用的提示和资源,以指导跨专业团队,以教育患者的诊断,治疗选择,监测和管理不良事件的实用策略以及有关支持护理的信息。通过指导您完成SDM的关键步骤,该实用的工具包旨在帮助您帮助患者患有HER2或三重阴性乳腺癌的患者通过小组教育课程或一对一的患者教育咨询,以保持教育,授权并从事护理。
•回顾早期TNBC中免疫疗法(IO)的开发•审查并总结了早期TNBC中最有影响力的IO研究•讨论在早期TNBC中IO中PCR与EFS之间的不断发展的关系,TNBC的TNBC•在SABCS 2023的早期研究中与IO的一些更新有关,将IN BERTIAS IN IN IN IN IN IN IN IN IN IN IN IN IN BERNATION IN IN BERNATION IN IN BERNATION IN BERECTION IN BELLAINS IN BEREATION IN BELLIDER IN BEREATITY IN IN BEREATION IN BEREATY IN IN BERE用于INBC。早期TNBC•审查早期TNBC患者实践算法中的更新
抽象拷贝数变化(CNV)是染色体结构变化的主要类型,在包括癌症在内的许多疾病中起重要作用。由于基因组不稳定性,可以在癌症等疾病中检测到大量的CNV事件。因此,重要的是要识别疾病中功能上重要的CNV,目前仍对基因组学提出挑战。解决问题的关键步骤之一是定义CNV的影响。在本文中,我们提供了一种基于拓扑的潜在方法TPQCI,以通过整合统计,基因调节关联和生物学功能信息来量化这种影响。我们使用该指标来检测乳腺癌和多发性骨髓瘤中CNV基因组片段的功能富集基因,并发现受CNV影响的生物学功能。我们的结果表明,通过使用我们提出的TPQCI度量,我们可以检测到受CNV影响的疾病特异性基因。TPQCI的源代码在GitHub(https://github.com/usos/tpqci)中提供。
摘要 早在 2012 年,Blom 等人就报道 (Nature Materials 2012, 11, 882) 半导体聚合物中的一般电子陷阱密度约为 3 × 10 17 cm −3 ,中心能量为低于真空度 ≈3.6 eV。有人提出,陷阱具有外部来源,水-氧复合物 [2(H 2 O)-O 2 ] 是可能的候选者,因为它具有电子亲和力。然而,缺乏进一步的证据,通用电子陷阱的起源仍然难以捉摸。本文在聚合物二极管中研究了可逆电子陷阱的温度依赖性,该陷阱在偏置应力下在数分钟内缓慢发展到 2 × 10 17 cm −3 的密度,中心能量为低于真空度 3.6 eV。陷阱形成动力学遵循 3 阶动力学,与陷阱通过三个扩散前体粒子相遇形成的理论一致。通用陷阱和缓慢演化的陷阱之间的一致性表明,半导体聚合物中的一般电子陷阱是通过氧和水分子之间的三重相遇过程形成的,该过程形成了建议的 [2(H 2 O)-O 2 ] 复合物作为陷阱起源。
对最常见的物理刺激的高度敏感和抗湿度的检测对于实时监测中的实际应用至关重要。在这里,据报道,一种简单而有效的策略可以达到高度湿度稳定的杂种复合材料,该复合材料能够同时且准确的压力和温度传感在单个传感器中。改善的电子性能是由于POLE(3,-4-甲基二氧二苯乙烯)(PEDOT)的平面性提高以及Pe-dot之间的电荷转移:聚苯乙烯磺酸盐(PEDOT:PSS)和多壁碳纳米管(CNT)(CNTS)通过强效应强度的相互作用。杂交复合材料中强大的形态引起的首选电子途径是高湿度稳定性的原因。这项研究还表明,该传感器对智能对象识别具有巨大的作用,高度为97.78%。以及摩尔电纳米生成剂(TENG)的位置检测能力,在智能分类方面,在不看到三重传感系统的潜在工业应用方面具有优势。