簇是指在子代数、同态像和直积下封闭的一类同类型的代数。众所周知(Birkhooff 定理),一类同类型的代数当且仅当它是方程类时才是簇。簇的基本问题之一是所谓的有限基问题,即它是否可以由有限个恒等式来定义。如果答案是肯定的,则它被称为有限基的。否则,它被称为非有限基的。如果由代数 A 生成的簇是有限基的(分别是非有限基的),则称代数 A 是有限基的(分别是非有限基的)。 1951 年,林登 [ 9 ] 证明所有二元素代数都是有限基的,并提出了是否每个有限代数都是有限基的问题。这个问题的答案是否定的,因为某个七元素群 [ 10 ] 被证明是非有限基的。一些经典代数是有限基的。例如,每个有限群 [ 15 ]、每个有限结合环 [ 6 , 8 ]、每个有限格 [ 11 ] 和每个交换半群 [ 18 ] 都是有限基的。然而,并非每个有限半群和每个有限半环都是有限基的。 Perkins [ 18 ](Dolinka [ 1 ])给出了非有限基有限半群(或半环)的第一个例子。为了寻求有限代数有限基问题的最终解,Tarski [ 24 ] 提出了以下问题:是否存在一种算法可以判定有限代数是否为有限基?McKenzie [ 12 ] 对有限群给出了否定的答案。然而,当限制于有限半群和有限半环时,这个问题仍然悬而未决。半环是指代数 ( S, + , · ),满足
摘要:近年来,基于硅的非线性光子学已在电信波长上进行了广泛的研究。然而,在中红外波长的硅中对硅非线性的研究仍然有限。在这里,我们报告了光谱中三阶非线性的波长依赖性范围从1.6 µm到6 µm,以及在同一范围内的多光子吸收系数。在波长为2.1 µm的波长下,以1.65×10-13 cm 2 /w的峰值为1.65×10-13 cm 2 /w测量三阶非线系数n 2,然后以非线性折射率n 2的衰减,最高2.6 µm。我们的最新测量值将波长扩展到6 µm,n 2的急剧降低超过2.1 µm,并且稳步保持在3 µm以上。此外,在2.3 µm至4.4 µm的波长范围内同时进行三光子吸收和四光子吸收过程的分析。此外,详细讨论了多光子吸收对硅非线性功绩的影响。
samarium(iii)mof,([[SM 2(ATA)3(DMF)4]·DMF(ATA 2-:2-氨基苯丙胺),缩写为NH 2-
简介。新型的光子量子技术依赖于非经典光的集成来源,从而产生了从单光子到明亮场的纠缠状态的范围。光学参数振荡器(OPO)被广泛用于此目的。纳米光子学的发展将这些设备带入了微观领域[1]。如今,它们代表了纠缠光子的可靠来源[2],是实现综合信息信息协议的基础[3]。在连续变量域中,实现了几个重要的里程碑,例如使用第二(χ(2))[4,5]和三阶(χ(3))非线性[6-11]的片上光学挤压。尤其是硅光子学引起了人们的极大兴趣,因为它们与CMOS(互补的金属 - 氧化物 - 氧化型)制造过程的兼容性,从而使光子和微电源在同一芯片中无缝整合。由其成熟的制造业杠杆作用,低损失波导是局部制造的,导致超高质量因子光学微型洞穴[12]。在这里,我们首次介绍了在片上OPO中产生的完整高斯州的完整量子断层扫描。是针对这些系统中纠缠的观察,在参考文献中进行了理论预测。[13,14],我们使用谐振辅助
摘要:三光子产生 (TPG) 是一种三阶非线性光学相互作用,其中能量为 ћω p 的光子分裂为三个光子,分别为 ћω 1 、 ћω 2 和 ћω 3,其中 ћω p = ћω 1 + ћω 2 + ћω 3。三重态具有与光子对不同的量子特征,这对量子信息具有浓厚的兴趣。在本研究中,我们首次实验演示了在 ћω 1 处对三重态的一种模式进行刺激的 TPG,之前对 TPG 的研究涉及在 ћω 2 和 ћω 3 处对两种模式进行刺激。非线性介质是在 λ p = 532 nm 下以皮秒模式(15 ps,10 Hz)泵浦的 KTiOPO 4 晶体。刺激光束由可调光学参量发生器发射:在刺激波长 λ 1 = 1491 nm 处发现相位匹配,三重态的另外两个模式在正交极化下为 λ 2 = λ 3 = 1654 nm。使用超导纳米线单光子探测器,对两个生成模式的极化和波长特征的测量与计算完全一致。在模式 2 和 3 上每个脉冲可以产生总计 2 × 10 4 的光子数,这相当于每个脉冲产生 10 4 个三重态,或者每秒产生 10 5 个三重态,因为重复率等于 10 Hz。我们在未耗尽泵浦和刺激近似下,在海森堡表示中的非线性动量算符的基础上开发的模型框架中解释了这些结果。
1 数据集信息 [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 使用均值、方差和三阶矩 Σ nt 的 1-back、2-back、3-back 任务的分类准确率 . . . . . . . . . . . . . . . . . . . . . . 42 3 使用 Σ n (t) 的均值、方差和三阶矩,对数据集 1 的 1-back、2-back、3-back 任务与 RELAX 任务之间的分类准确度 43 4 使用均值和方差以及不同的机器学习算法,对数据集 2 的不同 n-back 任务之间的分类准确度。 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
摘要:光学非线性过程在广泛的应用中是必不可少的,包括超快激光器,显微镜和量子信息技术。在不同的非线性过程中,二阶效应通常不堪重负,除了中心对称系统,二阶易感性在其中消失了,从而允许使用第三阶非线性。在这里,我们演示了一个混合光子平台,可以灵活地调整二阶和三阶敏感性之间的平衡。通过用原子上稀薄的钨化装饰超高的二氧化硅微腔,我们观察到腔体增强的第二谐波产生和汇总频率产生,并以连续波激发的功率水平仅为几百微米。我们表明,可以通过仔细选择二维材料的大小和位置来实现单个设备中二阶和三阶非线性的共存。我们的方法可以推广到其他类型的腔体,从而释放具有对新应用的非线性敏感性的混合系统的潜力。关键字:二维材料,超高Q微腔,第二谐波一代,非线性光学元件,过渡金属二核苷
自发参量下转换 (SPDC) 几十年来一直是探索量子现象及其应用的关键技术。例如,传统的 SPDC 将高能泵浦光子分裂成两个低能光子,是产生纠缠光子对的常用方法。自 SPDC 早期实现以来,研究人员一直想将其推广到更高阶,例如产生纠缠光子三重态。然而,通过单个 SPDC 过程直接生成光子三重态仍然难以实现。在这里,我们使用通量泵浦超导参量腔展示了直接三光子 SPDC,光子三重态在单腔模式下生成或在多个模式之间分裂。在强泵浦下,状态可以非常明亮,通量密度超过每秒每赫兹 60 个光子。观察到的状态是强非高斯的,这对潜在应用具有重要意义。在单模情况下,我们观察到正交电压的三角星形分布,这表明了长期预测的“星态”。观测到的状态表现出强的三阶关联,这与立方哈密顿量产生的状态预期一致。通过以多种模式的和频进行泵浦,我们观察到多种模式之间存在强的三体关联,令人惊讶的是,在没有二阶关联的情况下也是如此。我们进一步分析了辛对称群模式变换下的三阶关联,表明观察到的变换性质可以“指纹化”产生它们的特定立方哈密顿量。观测到的非高斯三阶关联代表了量子光学领域向前迈出的重要一步,可能对微波场的量子通信以及连续变量量子计算产生重大影响。
摘要 — 本文报道了一种新型差分折叠混频器,该混频器采用多重反馈技术来提高性能。具体而言,我们引入了电容交叉耦合 (CCC) 共栅 (CG) 跨导级,通过提高有效跨导来改善低功耗下的噪声系数 (NF),同时通过抑制二阶谐波失真来提高线性度。通常,CCC 产生的环路增益会增加三阶互调 (IM3) 失真,从而降低输入参考三阶截点 (IIP3)。在这里,我们建议在 CCC CG 跨导器中加入正电容反馈和第二个电容反馈,不仅可以抑制 IM3 失真电流,还可以增加输入晶体管的设计灵活性。此外,正反馈还通过灵活的设计标准改善了输入阻抗匹配、转换增益和 NF。采用 0.13 µ m 工艺制作的原型机,所提出的混频器工作在 900 MHz,在 1 V 电压下功耗为 4 mW。测得的双边带 (DSB) NF 为 8.5 dB,转换增益 (GC) 为 18.4 dB,IIP3 为 + 12.5 dBm。
“因此,据我们所知,它们是第一类以三阶响应为主要非线性响应的材料。此外,我们表明,由于这些材料中的自旋分裂较大,这种响应非常大。此外,交替磁体的弱自旋轨道耦合(与磁交换项相比)也出现在其非线性响应中,为这类新材料提供了一种新颖的传输特性,而这种特性以前仅限于寻找线性异常霍尔电导率。”