随着智能城市的扩展,商业智能(BI)的使用已成为资源优化,提高效率并提高公民生活质量的重要工具。BI使公司通过分析大量城市数据来做出更好的战略决策,从而帮助它们在动态的智能城市环境中保持竞争力。这项研究利用内容分析和Fermatean Fuzzy Topsis(FF- TOPSIS)方法在智能城市的背景下根据商业智能进行了基于商业智能的策略。最初,通过内容分析确定了相关标准,随后,根据这些标准制定并进行了五种策略。结果表明,“基于IOT的智能网络的开发(S2)”排名最高,因为它在优化资源管理和增强城市服务绩效方面发挥了重要作用,从而为智能城市的发展做出了巨大贡献。“工艺自动化和机器人系统的部署(S5)”排名第二,因为它提高了效率并减少了人类错误。 “无缝访问数据和服务的云平台集成(S3)也被证明非常重要,排名第三,因为它提供了对数据和服务的无缝访问。”人工智能部署用于预测分析和过程优化(S4)“排名第四,对于预测分析和过程优化至关重要,而“智能决策的大数据分析(S1)” - 尽管很重要,但排名第五,排名第五。城市经理应优先考虑物联网网络的发展,以充分利用其资源管理和效率提高的潜力。之后,对过程自动化和AI集成的关注可以显着提高公民的生活质量并降低城市成本。
最近,大型语言模型(LLMS)在传统的自然语言处理以外的领域取得了显着的成功,并且越来越有兴趣将LLMS应用于诸如代码生成,旅行计划和机器人控制之类的更一般性,但是这些模型仍然需要提高针对性的性能和特定领域或任务的概括能力。为了使Mod-Els更具体地了解各种任务,已提出提示学习将下游预测任务转换为语言模型任务。在提示学习方法中,大多数利用基于梯度的触发令牌搜索方法来自动上下文填充来完成任务。但是,这些方法并不总是提高LLM在完成任务时的准确性,尤其是在满足多种任务类型和不确定的输入句子时。触发令牌的选择通常缺乏特异性,从而导致模型性能。为了增强模型稳定性并生成更具针对性的触发令牌,我们通过平均梯度下降提出了上下文自动填充方法。与其他方法不同,我们的方法全面考虑了所有触发令牌与上下文之间的关系。提出的方法通过使用模型在所有触发令牌上的平均梯度选择一个令牌来选择一个令牌,从而选择一个令牌,从而选择一个令牌,从而选择一个令牌,从而选择一个令牌,从而选择了一个令牌,从而选择了一个令牌,从而选择了一个令牌,从而选择一个令牌来选择一个令牌,从而选择一个令牌,从而选择一个令牌,从而最大程度地利用模板的可能性函数来选择一个令牌。我们分别在SST-2和SICE-E数据集上进行了实验,分别进行了情感分析(SA)和自然语言推断(NLI)任务。实验结果表明,具有平均触发令牌梯度的上下文自动填充方法可产生更好的性能。
关于护理机器人系统的论述正在转移。辩论集中在机器人系统中的不同程度上,以及护理人员的工作是否可以用机器人代替(道尔顿 - 布朗,2020年),但重点现在是在护理机器人系统的实际实现上(Mahmoudi Asl Asl et al。,2022222)。担心因替代而导致的失业的担忧已经减少,而欧洲的人口趋势导致了员工短缺,预计越来越多的人需要护理的人受到强调(欧洲委员会,2023年)。将来,重点将更多地放在如何在护理部门建立足够的人类技术互动,以及从人类中心的角度从护理人员和其他利益相关者拨款(Paluch等,2022)。拨款是一个过程,其中使用技术文物并将其集成到用户的特定上下文和实践中,使它们适应了他们的需求,并在最初的设计意图之外重新解释了其目的。此外,拨款是一个创造性且动态的过程,是由上下文介导的,并与他人合作出现。目标不是决定技术解决方案,而是要吸引积极使用该技术的用户,以促进相互学习用户如何适应技术并塑造其设计的有意义且与他们的需求相关的用户。重点是长期使用以及对技术的创造性和嬉戏拨款。因此,这个过程是关于民主探讨该技术如何最适合背景的。这应该在人们的生活中创造锚点,以实现有意义的拨款(Stevens and Pipek,2018)。关于护理环境的机器人,社会信息学的观点特别有趣,因为它提供了敏感的概念,可以在不同的实践环境中调查此类问题(Wulf等,2015; Stevens等,2018)。但是,仍然有必要阐明使用机器人以及不同护理环境中的人们的实用性
关于护理机器人系统的论述正在转移。辩论集中在机器人系统中的不同程度上,以及护理人员的工作是否可以用机器人代替(道尔顿 - 布朗,2020年),但重点现在是在护理机器人系统的实际实现上(Mahmoudi Asl Asl et al。,2022222)。担心因替代而导致的失业的担忧已经减少,而欧洲的人口趋势导致了员工短缺,预计越来越多的人需要护理的人受到强调(欧洲委员会,2023年)。将来,重点将更多地放在如何在护理部门建立足够的人类技术互动,以及从人类中心的角度从护理人员和其他利益相关者拨款(Paluch等,2022)。拨款是一个过程,其中使用技术文物并将其集成到用户的特定上下文和实践中,使它们适应了他们的需求,并在最初的设计意图之外重新解释了其目的。此外,拨款是一个创造性且动态的过程,是由上下文介导的,并与他人合作出现。目标不是决定技术解决方案,而是要吸引积极使用该技术的用户,以促进相互学习用户如何适应技术并塑造其设计的有意义且与他们的需求相关的用户。重点是长期使用以及对技术的创造性和嬉戏拨款。因此,这个过程是关于民主探讨该技术如何最适合背景的。这应该在人们的生活中创造锚点,以实现有意义的拨款(Stevens and Pipek,2018)。关于护理环境的机器人,社会信息学的观点特别有趣,因为它提供了敏感的概念,可以在不同的实践环境中调查此类问题(Wulf等,2015; Stevens等,2018)。但是,仍然有必要阐明使用机器人以及不同护理环境中的人们的实用性
注意:对于SAA转换器,在转换时间点之前和之后提供了队列特征(即分别使用CSF 𝛼 -SYN SAA-的最后一个时间点,分别与CSF 𝛼 -SYN SAA +的第一个时间点)。n(%),用于连续变量的中位数(IQR)。在支持信息中,表S1提供了临床和生物标志物数据的数据计数和百分比。缩写:β,淀粉样蛋白β; ADAS-COG11,阿尔茨海默氏病评估量表认知子量表11-项目; Ancova,协方差分析;方差分析,方差分析; apoe,载脂蛋白E; CDR-SB,临床痴呆评级盒子的总和; CSF,脑脊液;铜,认知没有受损; MCI,轻度认知障碍; MMSE,小型国会考试; PACC,临床前阿尔茨海默氏症的认知复合材料; p-tau181,磷酸化的tau181; SAA,种子扩增测定法。皮尔森的卡方测试。b单向方差分析。c Fisher精确测试。d Ancova针对年龄,性别,教育,诊断和APOE进行了调整。e Ancova针对年龄,性别,教育,APOE,诊断和CSFAβ42状态进行了调整。f逻辑回归针对年龄,性别,教育,诊断和APOE进行了调整。g配对t检验:所有连续变量; McNemar测试:所有二进制变量;配对标志测试:诊断。
大语言模型(LLM)的兴起,例如GPT-4,已大大增加了各种数字平台上AI生成的内容的量。这些模型可以生成连贯和上下文相关的文本,从而使用户难以区分人类和机器生成的内容。AI生成的内容的重新上升使许多人质疑信息的可信度和可靠性,尤其是关于新闻,学术界和社交媒体的信息,而内容的完整性至关重要。这使得需要开发有效的方法将AI生成的内容检测到历史高(Fraser等人,2024)。最近在LLM的能力中获得的收益为他们的发现带来了新的挑战。ap-诸如使用Human的反馈和指导调整的加固学习之类的方法使这些模型更具多功能性,以遵循甚至连接提示,从而产生合理的响应,从而进一步使检测问题复杂化(Abdali等人。,2024)。依赖于识别单词选择,句子结构或困惑模式的传统检测方法通常不太适合,因为这些模型在模仿Hu-
vr对用户能力的假设对于具有移动性限制的用户可能无法满足的用户,而基于手势和运动的输入VR意味着通用电机可访问性解决方案无法提供足够的适应性补救措施。本文介绍了三相研究路径的结果,涵盖了可访问的空间输入中的各种研究问题。首先,对可访问的多模式输入设置的调查表明,由于各种自定义可访问性设置,针对输入类别而不是输入设备的设计是关键。第二个项目专注于在桌面和VR之间切换时所经历的情境障碍,展示和评估了一种解决用户上下文的解决方案,以使此跨设备输入更加容易。最终项目调查了VR的单个用户运动范围,并提出了一种受3 d几何原始启发的身体运动的设计语言。这些动作原语用于创建一个解决方案,该解决方案可以比传统传输功能更简单,更简洁的方式来启用用户可限制的输入重新映射。
缩小差距 - 在监管上下文截止日期中验证和实施新方法方法:28/04/2025关键字:实施/技术转移化学毒理学,临床前研究,临床前研究,社会科学,发表于:06.01.01.2025 Akronyment:valnam网站:wwwwww.valnam.eu 1。一旦对人类的可能有毒效果和危害进行了充分的评估,才可以批准新的化学产品和药物。此外,还需要以人类相关的方式建立新开发的药物的功效。国家和国际立法促进了此类评估。但是,科学和社会越来越意识到人道模型模仿人类生物学的必要性。因此,开发创新的人性化测试系统不仅将是替代动物测试的关键因素,而且由于使用类似于人类状况的模型而受益于社会和环境,最终导致更安全,更有效的产品。在物质测试中,动物测试长期以来一直是黄金标准。近年来,越来越明显的是,所谓的“翻译失败”,即将动物测试转移到人类的成功率低是一个紧迫的问题,必须解决。新方法方法(NAMS
1。Lanqing Li,Rui Yang和Dijun Luo。焦点:通过距离度量学习和行为正则化的有效的全面隔行元提升学习。ICLR 2021。2。haoqi yuan和Zongqing lu。通过对比度学习,脱机元强化学习的强大任务表示。ICML 2022。3。Yunkai Gao等。 下文减少离线元强化学习。 神经2023。Yunkai Gao等。下文减少离线元强化学习。神经2023。