摘要简介改善下肢运动功能是冲程后康复治疗的重点和困难。最近,机器人辅助和虚拟现实(VR)培训通常用于冲程后康复,被认为是可行的治疗方法。在这里,我们开发了一种康复系统,该系统将机器人运动援助与基于神经电路的VR(Neucir-VR)康复计划相结合,涉及程序下肢康复与奖励机制,从肌肉力量训练,姿势控制和平衡训练到简单而复杂的地面步行训练。该研究旨在探讨中风后患者的机器人运动援助和Neucir-VR下肢康复训练的有效性和神经系统机制。方法和分析这是一个单中心,观察者盲目的,随机对照试验。40例中风后下肢偏瘫患者将被募集并随机分为对照组(合并的机器人援助和VR培训)和一个干预组(合并的机器人援助和Neucir-VR培训),比率为1:1。每个小组每周将接受五个30分钟的会话,持续4周。主要结果将是对下肢的Fugl-Meyer评估。次要结果将包括Berg平衡量表,修改的Ashworth量表和通过静止状态功能MRI测量的功能连接性。结果将在基线(T0),干预后(T1)和随访(T2-T4)时进行测量。2019–014)。结果将提交给同行审查的期刊或会议。道德,注册和传播该试验得到了上海传统医学大学的Yueyang综合中国和西医综合医院伦理委员会的批准(赠款号试用注册号CHICTR2100052133。
为了评估证据是否足以得出关于技术净健康结果的结论,需要审查两个领域:相关性以及质量和可信度。为了具有相关性,研究必须代表该技术在目标人群中的一种或多种预期临床用途,并在可比强度下比较有效且合适的替代方案。对于某些情况,替代方案将是支持性治疗或监测。证据的质量和可信度取决于研究设计和实施,以尽量减少可能产生错误发现的偏见和混杂因素。随机对照试验 (RCT) 是评估疗效的首选;然而,在某些情况下,非随机研究可能就足够了。RCT 很少规模足够大或时间足够长,无法捕捉到不太常见的不良事件和长期影响。其他类型的研究也可用于这些目的,并评估对更广泛临床人群和临床实践环境的普遍性。
摘要:在超过三分之一的正面碰撞事故中,前排乘客的下肢受伤。一项研究旨在确定各种类型的伤害、车内伤害的来源以及伤害机制。这些信息有助于指导未来的监管工作,旨在减少这些伤害的频率和严重程度,并就如何在未来的车辆设计中减轻这些伤害提出建议。对在正面碰撞中受伤的乘用车住院或死亡的车内乘客进行了详细检查。研究结果表明,骨折发生在 SS% 的事故中,其中有人遭受下肢伤害。踝关节和足部骨折比其他下肢骨折更常见,并且地板和脚趾区域尤其容易发生这些骨折。受伤的乘员没有明显的年龄或性别影响。与受约束的乘员相比,未受约束的乘员似乎更容易因与仪表板接触而遭受大腿骨折。骨折数量与撞击速度成正比,大约一半的骨折发生在 delta-\' 值为 48km/h 或更低时。最常见的损伤机制是大腿受压(辅助负荷)、膝盖垂直负荷以及脚部挤压或扭曲。需要制定额外的法规来减少这些伤害的频率和严重程度,并且有多种应对措施可供选择。
总体而言,turtexchange响应表明,NWCSP下肢Workstream在推动计划,改善数据收集以及促进各种组织之间的知识共享方面有效。它还有助于实施对途径的重大变化,改善患者的结果,并提供最佳实践的国家。但是,有些领域需要改进,例如质量质量较差的社区数据集,难以满足综合数据需求以及不切实际的数据抱负。也需要从所有初级保健服务,伤口护理模板中的标准化以及更集中的数据进行更好的参与度。
如今,由于改进的机器人技术以及人们对与机器人互动的积极看法,ERS变得越来越流行。 人机协作技术可以增强外骨骼的便利性或舒适性,如康复研究所示(Campeau-Lecours等,2018; Wu and Li,2019)。 此外,可以广泛用于康复(Zhang X.等,2017),提供电力援助并帮助患者恢复正常生活(He。 例如,可穿戴机器人(WR)可以发挥与人类关节相同的作用和功能。 通常,它可以通过了解用户执行不同任务的意图来帮助人们。 此外,使用多传感器网络,ERS可以收集患者的运动意图,并与用户的运动完全合作。如今,由于改进的机器人技术以及人们对与机器人互动的积极看法,ERS变得越来越流行。人机协作技术可以增强外骨骼的便利性或舒适性,如康复研究所示(Campeau-Lecours等,2018; Wu and Li,2019)。此外,可以广泛用于康复(Zhang X.等,2017),提供电力援助并帮助患者恢复正常生活(He。例如,可穿戴机器人(WR)可以发挥与人类关节相同的作用和功能。通常,它可以通过了解用户执行不同任务的意图来帮助人们。此外,使用多传感器网络,ERS可以收集患者的运动意图,并与用户的运动完全合作。
摘要:对负担得起的假体的需求,尤其是在低收入和中等收入国家(LMIC)的需求很大。当前,大多数假肢插座是使用单岩性热塑性聚合物(例如PP(聚丙烯))制造的,这些聚合物缺乏耐用性,强度和表现出蠕变。另外,它们会用消费热固性树脂和昂贵的复合填充剂(例如碳,玻璃或凯夫拉尔纤维)加固。但是,amputees在获得负担得起的假肢插座方面所面临的未满足需求,要求解决方案。这项研究利用自我增强的PET(Tereylyene Terephenate)(一种负担得起且可持续的复合材料)生产定制的插座。使用可重复使用的真空袋和专用的固化烤箱,推进了独特的插座制造技术的开发,我们测试了制造的插座以获得最大的强度。随后,为其在行动过程中的性能创建和评估了假肢设备。插座的宠物材料的机械和结构强度达到了132 MPa和5686 N的最大强度。发现表明该材料有可能用作制造功能插座的可行替代品。此外,考虑了诸如材料成本,插座重量和强度之类的决策标准,进行了TOPSIS分析以比较插座的性能指数。结果表明,宠物插座在负担能力,耐用性和强度方面优于其他材料。该方法在不到两个小时的时间内成功制造了复杂形的患者插座。此外,步行测试表明,截肢者可以在没有中断的情况下进行日常活动。这项研究在实现负担得起的LMIC的假体方面取得了重大进展,旨在提供针对LMIC量身定制的特定于患者的负担得起的假体。
背景:快速视觉运动反应时间 (VMRT) 是识别和响应连续出现的视觉刺激所需的时间,它使运动员能够在运动期间成功地对刺激做出反应,而较慢的 VMRT 则与受伤风险增加有关。基于光的系统能够测量上肢和下肢 VMRT;但这些评估的可靠性尚不清楚。目的:使用基于光的训练系统确定上肢和下肢 VMRT 任务的可靠性。设计:可靠性研究。地点:实验室。患者(或其他参与者):20 名在过去 12 个月内没有受伤史的参与者。方法:参与者在间隔 1 周的 2 个单独测试会议上向实验室报告。对于这两项任务,都要求参与者尽快熄灭随机序列的发光二极管磁盘,这些磁盘一次出现一个。在完成测试试验之前,为参与者提供了一系列练习试验。 VMRT 计算为两次击中目标之间的时间(以秒为单位),其中 VMRT 越高表示反应时间越慢。主要结果测量:计算单独的组内相关系数(ICC)和相应的 95% 置信区间(CI),以确定每个任务的重测信度。确定 SEM 和最小可检测变化值以检查临床适用性。结果:右肢下肢信度极佳(ICC 2,1 = .92;95% CI,.81 – .97)。左肢(ICC 2,1 = .80;95% CI,.56 – .92)和上肢任务(ICC 2,1 = .86;95% CI,.65 – .95)均具有良好的信度。结论:两个 VMRT 任务在健康、活跃人群中均具有临床可接受的信度。未来的研究应该探索这些测试的进一步应用,作为已知 VMRT 缺陷的健康状况康复后的结果测量。
在过去的二十年中,使用可穿戴惯性测量单元 (IMU) 来替代传统的人体光学运动捕捉 (OMC) 技术引起了越来越多的关注。与传统的 OMC 相比,IMU 的侵入性较低,并且可以在感兴趣的环境中进行测量,而不仅仅是在人为的实验室空间中。这项工作的主要目标是通过提高 IMU 得出的人体骨骼关节角度的准确性,同时尽量减少使用基于 IMU 的人体运动捕捉系统所需的校准,来推进人机 IMU 运动建模和估计技术。这项工作的次要目标是展示基于 IMU 的运动捕捉系统在特定感兴趣的领域的实际应用:太空服设计和操作。在这个领域,IMU 提供了一种易于理解的方法来理解该领域适合或不适合的人体运动学。在相关环境中捕捉这些运动学可以让工程师更好地设计和维护太空服,以及模拟未来人类行星际太空飞行的操作范例。
最近,四家创始组织成立了肢体保护联盟 1,这是一个国际合作联盟,它们分别是:美国肢体保护协会 (ALPS)、加拿大足病医学协会、D-Foot 国际组织和加拿大伤口组织。该联盟的目的是促进肢体保护、教育、宣传和提高认识。为了在联盟内分享和调动知识,ALPS 教育委员会在患糖尿病足病的患者的帮助下开发了一个患者资源,以提供有关足部和腿部伤口预防和管理的事实,并采取行动防止可预防的截肢。因此,我们向伤口护理社区介绍了这一在线资源,并解释了 ALPS 是谁、如何以及为什么开发了它。