在本次演讲中,我将解释流形 M 的德拉姆上同调与同一空间上的紧支撑上同调之间的对偶性。这种现象被称为“庞加莱对偶”,它描述了微分拓扑中的一种普遍现象,即流形上封闭的、精确可微形式空间与其紧支撑对应物之间的对偶性。为了定义和证明这种对偶性,我将从向量空间对偶空间的简单定义开始,再到向量空间上正定内积的定义,然后定义流形的概念。我将继续定义可微流形上的微分形式及其相应的空间,这些对于此分析是必要的。然后,我将介绍流形的良好覆盖、有限型流形和方向的概念,这些都是定义和证明庞加莱对偶所必需的概念。我将以 M 可定向且承认有限好覆盖的情况下的庞加莱对偶的证明作为结束,并举例说明。
上同调事实网络涉及量子误差修正、基于测量的量子计算、对称保护的拓扑序和语境性。在这里,我们将这个网络扩展到具有魔态的量子计算。在这个计算方案中,某些准概率函数的负性是量子性的一个指标。然而,在构造适用此陈述的准概率函数时,偶数和奇数局部希尔伯特空间维数的情况之间会出现显著差异。在技术层面上,在具有魔态的量子计算中将负性确立为量子性的指标依赖于 Wigner 函数的两个性质:它们相对于 Clifferd 群的协方差和 Pauli 测量的正表示。在奇数维度上,Gross 的 Wigner 函数(原始 Wigner 函数对奇数有限维希尔伯特空间的改编)具有这些性质。在偶数维度上,Gross 的 Wigner 函数不存在。这里我们讨论一类更广泛的 Wigner 函数,它们和 Gross 的函数一样,都是从算子基数获得的。我们发现,这种 Clifferd 协变 Wigner 函数在任何偶数维中都不存在,而且,只要量子数为 n ≥ 2 ,泡利测量就不能用它们在任何偶数维中正表示。我们确定,这种 Wigner 函数存在的障碍是同调的。
层论的语境定义对我们理解语境起到了重要作用,因为它为直观的语境概念提供了精确的数学结构。层论框架最早由 Abramsky 和 Brandenburger [11, 13] 提出,他们在测量场景中定义了事件和分布,并确定了这些概念的层结构。在这里,我们可以将全局分布与隐变量模型联系起来,该模型因无法解释量子理论的独特特征而闻名。Abramsky、Barbosa 和 Mansfield [16] 进一步探讨了语境的一种度量。这项工作开辟了在给定量子场景中量化语境的方法。随后同调方法对语境的研究也为在给定测量场景中观察语境提供了重要的方法。 Abramsky、Mansfield 和 Barbosa [12] 提出了基于ˇ Cech 上同调不变量的方法,该方法利用层上同调的强大工具来检测经验模型中的语境性。Okay、Roberts、Bartlett 和 Raussendorf [21] 的提议建立了识别语境性的拓扑方法,该方法有可能提供更精细的分析,尽管必须考虑额外的拓扑结构。Aasnæss [18] 将这些方法联系起来,通过将论据从一种转化为另一种,补充了每种方法的通用性和完整性。另一方面,同一研究小组还描述了一种更强形式的语境性,即全有与全无 (AvN) 论据。Abramsky 等人 [14, 15] 参考 Mermin [9, 10] 的观察,将量子信息系统中的逻辑不一致性形式化为 AvN 论证。在 Aasnæss [18] 的著作中,这种语境性也被看作是上同调群的一个障碍。虽然层论框架为 MBQC 和浅层电路的量子优势提供了论证基础,但应用的最后一个案例,即参考文献 23 和 24,可以追溯到 Kochen 和 Specker 关于形式化语境性的框架,即所谓的封闭子理论中的语境性。这个概念似乎用
M2 ICFP - 量子信息理论 2021-2022 年 环面代码的逻辑运算符。为了描述环面代码的逻辑量子位,我们需要了解 C 1 / C 2 的等价类,即不是边界的循环。确实存在两个不等价的此类循环家族,对应于环面周围的两种环。这些循环是同调非平凡的,这意味着它们不能变形(通过添加边界)以产生零循环。因此,环面代码是拓扑代码的一个例子:量子代码的性质来自底层流形的拓扑。事实上,环面代码是由环面的特定单元化给出的,即环面在斑块中的分解。标准环面代码使用方形斑块,但也可以选其他类型的斑块,例如三角形。
对应性 128 8. 动机概述 137 8.1. 代数簇和动机 137 8.2. 纯动机 146 8.3. 混合动机 151 8.4. 混合霍奇结构 156 8.5. 泰特动机、周期和量子场 159 9. 基本粒子的标准模型 160 9.1. 粒子和相互作用 162 9.2. 对称性 163 9.3. 夸克混合:CKM 矩阵 166 9.4. 标准模型拉格朗日量 166 9.5. 量子能级:异常、鬼影、规范固定 170 9.6. 大质量中微子 174 9.7. 与引力最小耦合的标准模型 179 9.8.引力中的高阶导数项 183 9.9. 对称性作为微分同胚 184 10. (度量)非交换几何的框架 186 10.1. 谱几何 187 10.2. 谱三元组 190 10.3. 实谱三元组的实部 192 10.4. Hochschild 和循环上同调 193 10.5. 局部指标上循环 198 10.6. Hochschild 上同调中的正性和杨-米尔斯作用 201 10.7. 循环上同调和陈-西蒙斯作用 202 10.8. 度量的内部涨落 203 11. 谱作用原理 206 11.1.谱作用和标量曲率中 Λ 2 的项 210 11.2. Seeley-DeWitt 系数和 Gilkey 定理 216 11.3. 广义 Lichnerowicz 公式 217 11.4. 爱因斯坦-杨-米尔斯系统 218 11.5. 谱作用中的尺度无关项 223 11.6. 带有伸缩子的谱作用 227 12. 非交换几何和标准模型 230 13. 有限非交换几何 234 13.1. 子代数和一阶条件 238 13.2. 双模 HF 和费米子 240 13.3. 幺模性和超电荷 243 13.4. Dirac算子的分类 246 13.5. Dirac算子的模空间与Yukawa参数 252 13.6. 有限几何的交对 255
摘要:我们强调了 M5 膜 sigma 模型中场内容的全局完成的必要性,类似于狄拉克的电荷/通量量化,并指出世界体积及其周围超重力背景下的超空间 Bianchi 恒等式将 M5 的通量量化定律限制为非阿贝尔上同调理论,合理等同于扭曲形式的同伦。为了清楚地阐明这一微妙之处,我们通过 M5“超嵌入”对世界体积 3 通量进行了简化的重新推导。最后,假设通量量化定律实际上是同伦的(“假设 H”),我们展示了这如何意味着在一般 M5 世界体积上存在 Skyrmion 类孤子,以及在异质 M 理论中“开放 M5 膜”边界上存在(阿贝尔)任意子孤子。