船只的腐蚀是印度海军面临的严重问题,可缩短船舶的使用寿命。海水与油性废物混合,废油充满了印度海军船中的船只,这些船只腐蚀了舱底和其他管道材料。为了避免船只较低的腐蚀,在制造时和船舶刷新期间使用有机防护涂层。但是,这种涂层受到物理,机械和其他焊接作品的破坏。由于难以到达舱底区域,因此无法重新涂抹舱底。还使用牺牲阳极来控制舱底的腐蚀,这是由于潮湿和干燥的条件以及在牺牲阳极上涂层的涂层。腐蚀抑制剂可以最大程度地减少舱底腐蚀和其他材料的腐蚀。
累积部署的薄效率 - 光电脉冲和薄的光伏制造能力的行业领导者都通过蒸气加工产生其镉的太阳能电池。4 - 6此外,可以使用蒸气处理通过Heliatek GmbH对有机光伏的溶液或蒸气方法进行制造。7与这些技术类似,基于蒸气的加工有望在基于钙钛矿的光伏的商业化中发挥关键作用。8它们不仅可以启用具有高产量和可重复性的高质量工艺,而且还可以消除危险溶剂,并简化对较大设备区域的升级。9此外,通过蒸气加工均匀地涂层在粗糙表面上涂层的能力是有益的,在串联应用中,在部署基于perovskite的材料时,这一点尤其重要。10 - 12虽然只有一小部分的研究专注于卤化物钙钛矿材料的蒸气加工,但其进度绝不比基于溶液的方法不如基于溶液的方法,尤其是在研究最多的混合有机有机物 - 无机卤化盐酸钙钛矿材料时。13 - 15个使用蒸气加工有机 - 无机卤化物钙钛矿吸收剂的太阳能电池的降低功率转化率(PCE)为24.4%,16个与基于溶液的方法相当。17
微生物学上影响的腐蚀(MIC)是行业和基础设施的关键问题。生物膜在金属,混凝土和医疗设备等各种表面上形成。但是,在某些情况下,微生物对材料的影响可能对材料的一致性和完整性呈负。因此,为了克服麦克风在系统上提出的问题,已经考虑了不同的物理,化学和生物学策略;所有人都有自己的优势,局限性,有时甚至是不必要的缺点。在所有方法中,尽管它们面临一些挑战,但在控制麦克风方面,杀生物剂治疗和防污涂料更为常见。他们缺乏特定的MIC微生物,导致越野耐药并需要更高的浓度。此外,它们构成环境风险并损害非目标生物。因此,随着法规的收紧,对环保,长期解决方案的需求正在增加。最近,与常规的杀菌剂或涂料相比,由于其显着的抗菌效率及其对较低的环境风险的潜力,注意纳米材料来减轻或控制MIC。使用纳米材料抑制麦克风非常新,并且缺乏对该主题的文献综述。为了解决这个问题,我们对被检查为杀菌剂或表面上涂层的形式进行的纳米材料进行了评论,以减轻麦克风。本次审查将有助于巩固有关使用纳米材料进行麦克风缓解的知识和研究。它将进一步有助于更好地理解与使用纳米材料进行麦克风预防和控制相关的潜在应用和挑战。
电话:707-628-5107 电子邮件:jbahena@veeco.com 摘要 5G、物联网和其他全球技术趋势的需求,加上缩小工艺节点成本的增加,已导致向更集成的封装要求转变。扇出晶圆级封装、2.5D/3D IC 封装和异构集成等先进封装技术的出现,为更小尺寸、更高功能和带宽带来了潜力。为了实现这些技术,通常需要对器件晶圆进行背面处理或减薄。这就要求使用临时粘合材料将器件晶圆粘附到刚性载体晶圆上,以便在处理和加工过程中提供机械支撑。释放载体后,必须彻底清除器件晶圆上的临时粘合材料。许多此类粘合剂都暴露在高功率激光或高温下,这使得清除更具挑战性。临时键合材料去除的亚微米级颗粒清洁要求也达到了通常为前端处理保留的标准。这在 3D 工艺中尤其重要,例如混合键合,其中特征和间距尺寸接近 < 1 µm,清洁不充分会导致后续键合工艺失败。因此,必须仔细考虑所有处理步骤以满足严格的颗粒要求。这项工作研究了硅晶片上涂层和烘烤的临时键合材料的去除,重点是获得最佳颗粒结果的加工条件。通过进行试样级研究和测量表面特性,在烧杯级评估了几种化学物质。根据这些发现,使用可定制的单晶圆加工工具对 300 毫米晶圆进行了研究。关键词临时键合材料、湿法清洗、晶圆级封装、单晶圆加工。I.简介 虽然晶体管和节点缩放一直在不断进步,但相关的成本和复杂性要求采用其他途径来提高性能。最突出的是,先进封装中的 2.5D/3D 集成通过将不同尺寸和材料的不同组件集成到单个设备中,显示出巨大的前景 [1]。由于许多当前的集成工艺流程都需要对设备晶圆进行背面处理或减薄,因此使用临时键合和脱键合 (TBDB) 系统已被证明是必要的多种类型的集成技术已经得到开发,例如扇出型晶圆级封装 (FOWLP)、2.5D 中介层、3D 硅通孔 (TSV) 和堆叠封装 (PoP),具有高集成度、低功耗、小型化和高可靠性等预期优势 [1-3]。