• 专业知识:审稿人应具备北极茴鱼或类似物种生物学方面的知识或经验。 • 独立性:审稿人不应受雇于本局。如果政府支持其工作,学术、咨询或政府科学家应具有足够的独立性,不受本局的约束。 • 客观性:审稿人应得到同行的认可,被认为是客观、开放和深思熟虑的。此外,审稿人应乐于分享自己的知识和观点,并公开指出自己的知识空白。 • 利益冲突:审稿人不应有任何冲突或可能损害其客观性或造成不公平竞争优势的经济或其他利益。如果其他合格的审稿人存在不可避免的利益冲突,本局可公开披露该冲突。虽然专业知识是主要考虑因素,但本局将选择同行审稿人(考虑但不限于这些选择),以增加与北极茴鱼物种状况评估报告相关的多样化科学观点。我们不会向同行审稿人提供经济补偿。我们将征求至少三位合格专家的评论。
摘要:whirly1是一种小型植物特异性的ssDNA结合蛋白,双重位于叶绿体和核中,讨论是作为一种逆行信号,可作为逆行信号传递从叶绿素传递到细胞核的应激信号,并在那里触发与压力相关的基因表达。在这项工作中,我们调查了使用两条过表达线(OEW1-2和OEW1-15)在大麦的干旱应力反应中的功能。Whirly1的过表达延迟了原发性叶片中与干旱应力相关的发作。干旱应激的两个脱甲酸(ABA)依赖性标记基因HVNCED1和HVS40,其在干旱治疗期间诱导的野生型中的表达并未在过表达线中诱导。此外,叶片中的ABA浓度与干旱相关的浓度增加在Whirly1过表达线中被抑制。分析Whirly1功能获得的影响对核基因表达与干旱相关的重编程的影响,进行了RNASEQ进行比较野生型和过表达线的影响。群集分析揭示了一组高度上调的基因,该基因响应野生型的干旱,而不是在Whirly1过表达线中。是许多胁迫和脱落酸(ABA)相关的基因。与野生型相比,在OEW1系中上调的另一个簇包含上调的基因。这些与原代新陈代谢,叶绿体功能和生长有关。我们的结果表明,Whirly1充当枢纽,平衡与压力相关和发育途径之间的权衡。测试Whirly1的功能获得的功能是否影响与压力相关基因表达的表观遗传控制,我们分析了启动子不同区域和HVNCED1和HVS40的转录起始位点的干旱相关组蛋白修饰。有趣的是,在Whirly1过表达线中,两个基因的构想标记水平(H3K4ME3和H3K9AC)显然降低了。我们的结果表明,被讨论以作为逆行信号的Whirly1会通过差异组蛋白的修饰在干旱过程中影响与ABA相关的核基因表达的重编程。
获得了项目所有者的上游所有权权益。委员会已将委员会条例第 1769(b) 条解释为无需委员会批准上游所有权权益的处置。请参阅委员会命令拒绝变更所有权请愿书(不带偏见),案卷编号 07-AFC-6,2009 年 4 月 9 日,TN 50944。
本文旨在研究人工智能 (AI) 在农业供应链 (AgSC) 中的应用,并从上游-中游-下游位置的角度了解不同的机遇和挑战。通过文献综述的方法,捕捉了农业供应链四个领域(即运营、决策、风险管理和可持续性)中的人工智能应用。对所审查的文献进行了农业供应链位置、技术和业务领域的比较分析。结果捕捉到了人工智能技术如何从上游发展到下游和从下游发展到上游的动态。此外,分析还提出了一些关于如何起草该领域未来研究、投资地图、技能发展计划以及农业供应链可持续发展议程的建议。
流量测量结构被定义为安装在明渠或封闭管道中的水力结构,这些管道具有自由水位,在大多数情况下,可以从测量的上游水位得出流量。图 1 显示了流量测量结构。事实上,这种结构是人为减少渠道或管道的横截面积,导致上游水位上升,从而导致结构上的水位下降。如果减少幅度足够大,我们就会得到流量和上游水位之间的独特关系。通过连续测量这个水位,我们还可以获得流量随时间变化的连续记录。流量和上游水位之间的关系主要取决于结构的形状和尺寸,而上游渠道或管道的几何形状则略有不同。可以从理论方法建立该关系,该方法需要通过校准来支持,校准主要通过水力模型研究进行。在过去的几个世纪中,设计了多种类型的流量测量结构,其特性满足了现代水资源开发的需求,特别是在灌溉计划和水文研究中。了解流量测量结构的使用的最有效方法是查阅专门针对这些结构发布的手册。这样的手册 [1] 和 [2] 不仅对现有结构进行了相当完整的回顾,而且还提供了必要的基本原理和实用概述,说明如何根据特定需求选择最合适的结构以及如何进行流量测量结构的水力设计。本章讨论堰、水槽和闸门等明渠中的流量测量结构。此外,其中一些结构用于具有自由水位的封闭管道,例如下水道。
AI有望改变上游石油和天然气运营中的预测性维护,运营效率以及安全性和合规性。几个AI用例影响了这三个领域,并跨越了四个类别:实时连续咨询和洞察力,复杂的建模和优化,预测分析以及预测,内容创建和集成。上游组织应评估这些用途案例可以生成的价值,而在其独特环境中实现用例的复杂性。识别使用AI,塑造AI使用案例的有形和可量化的机会,并优先考虑和实施具有最高价值的用例相对于复杂性,为上游石油和天然气中AI的期望转向现实提供了途径。
MAPK是通用的真核信号传导因子,其功能被认为取决于其激活剂,底物和iNactivators对公共对接基序(CD)的识别。我们通过执行相互作用的基础并确定结合配体结合的MPK4晶体结构来研究拟南芥MPK4的CD结构域的作用。我们揭示了MPK4的CD域对于其上游MAPKKS MKK1,MKK2和MKK6对于相互作用和激活至关重要。cys181被证明是对活性氧的体外响应的磺酰基的。为了测试C181在体内的功能,我们生成了野生型(WT)MPK4-C181,Nonsulfenylabable MPK4-C181S,并在MPK4淘汰赛中模仿MPK4-C181D线的潜在硫乙基。我们分析了MPK4-C181S具有WT活性并补充MPK4表型的生长,发育和压力反应中的表型。相比之下,MPK4-C181D不能被上游MAPKK激活,并且不能补充MPK4的现场类型。我们的发现表明,CD基序是必不可少的,并且是由上游MAPKK激活MPK4功能所必需的。此外,生长,发育或免疫功能需要上游激活MPK4蛋白激酶。
前陆位于上游,产品在 GSC 上游制造和生产。它必须低成本、精益。货运枢纽 (FH)、航运枢纽 (SH)、支线港口、陆港门户港口的生态系统必须与低成本保持一致。生产以“推动”为基础,以获得规模经济。库存是根据“大数据”和总体预测设计的。具有灵活容量的智能库存推动着 GSC 的上游建设。使用人工智能 (AI) 机器学习 (ML) 设备支持的高科技(IT 和 OT)数字工厂学习和调整操作传感器,以使用工业 4.0 和工业物联网 (IIOT) 与所有接口通信,以创建统一名称空间接口和数字孪生技术来提高效率。(请参阅以下关于数字工厂的幻灯片)
注:同源臂位于敲入位点上游和下游约 500–1,000 bp 处。图 1 C 为 SIN3A 示例的供体载体示意图。为选取基因组区域作为同源臂,我们使用 Primer-BLAST ( https://www.ncbi.nlm.nih.gov/tools/primer-blast/ ) 设计了两对引物,分别位于 SIN3A 终止密码子上游 500–1,000 bp 处和下游 500–1,000 bp 处。也可以使用其他程序设计引物。正向和反向引物之间的区域用作同源臂。我们选择 SIN3A 终止密码子上游 501 bp 序列作为左同源臂(图 2 A 和 2B 中的 SIN3A 左),并选择 SIN3A 终止密码子下游 612 bp 序列作为右同源臂(图 2 A 和 2B 中的 SIN3A 右)。