摘要 人畜共患病占新发传染病的 60%,其中 70% 来自野生动物。蝙蝠是许多传染源的宿主,特别是导致人类人畜共患病的病毒,如埃博拉病毒、尼帕病毒或亨德拉病毒。在过去的二十年中,源自蝙蝠的新病毒在人类和动物种群中出现,对公众和兽医健康以及经济产生了重大影响。严重急性呼吸综合征 (SARS)、中东呼吸综合征 (MERS) 和急性猪腹泻综合征 (SADS) 等冠状病毒 (CoV) 的情况尤其如此,它们导致数千人死亡以及大量死亡。养猪场的死亡率。尽管大量研究已在全球范围内发现了蝙蝠冠状病毒,但目前对热带岛屿生态系统中冠状病毒出现的多样性和风险的了解仍有待准确评估。本论文的目的是研究蝙蝠种群中冠状病毒的生态和进化。最初,我们对宿主接触 x CoV 的程度以及这些病毒在西印度洋岛屿的系统发育地理学背景下的进化历史感兴趣。基于对 1088 个样本的分子生物学分析,这项研究首次强调了 εayotte、εozambique、留尼汪岛和马达加斯加的食虫蝙蝠中存在 CoV。蝙蝠感染冠状病毒的总体患病率为 8.0% ± 1.2%,非洲大陆和岛屿之间以及蝙蝠科之间也存在显着差异。我们发现了 α-CoV 和 β-CoV 的巨大遗传多样性,其中一些在系统发育上与人类 CoV 接近(例如HCoV-NL63、HCoV-229E、MERS-CoV)。最后,这些 CoV 在系统发育上由蝙蝠家族构成,支持西印度洋蝙蝠与其 CoV 之间共同进化的悠久历史。然后,我们对留尼旺岛特有物种小莫洛瑟尔 (Mormopterus francoismoutoui) 产妇群体中 CoV 感染的动态进行了纵向研究。基于对环境样本(粪便和鸟粪)中病毒基因组的检测,我们探讨了连续两年内人口结构对感染动态的影响。结果显示,蝙蝠感染率在季节变化中存在非常明显的变化,存在两个感染高峰:在产房洞穴定殖期间(与宿主密度增加有关),以及大约一个月分娩后(与新生儿免疫力丧失有关)。所有这些工作表明,西印度洋蝙蝠体内冠状病毒的进化主要是由于宿主与其病毒之间的共同进化,尽管岛屿环境也可能导致蝙蝠家族内岛屿内的物种形成。在种群水平上影响感染动态的生态和生物因素的识别突出表明,冠状病毒传播给其他宿主的风险因每个岛屿上现有的蝙蝠群落而异,也取决于宿主种群的结构和它的时间变化。
hobbyzone.biz › docs › fun_44010 PDF 2021年5月13日 — 2021年5月13日 有好几架这样的飞机,它们与 A-50 Mainstay AWACS 飞机有一些共同的特征。Il-78 和 Il-78M Midas 也有名称... 2 页
Patrícia C. Pires, Maria Beatriz Pinto, Mafalda Correia, Gabriela Moço, Ricardo C. Calhelha, Ana Rita Silva, Maria João Sousa, Miguel Vilas-Boas, Soraia I. Falcão, Francisco Veiga, Pooyan Makvandi, Ana Claudia Paiva-SantosPatrícia C. Pires, Maria Beatriz Pinto, Mafalda Correia, Gabriela Moço, Ricardo C. Calhelha, Ana Rita Silva, Maria João Sousa, Miguel Vilas-Boas, Soraia I. Falcão, Francisco Veiga, Pooyan Makvandi, Ana Claudia Paiva-Santos
概要 人畜共患病 60% 是突发传染病,70% 是野生动物的人畜共患病。 Les chauves-souris sont les hôtes de nombreuxagents infectieux, notamment deviruses responsables de Zoonoses chez l'Hommecomme 病毒埃博拉病毒、 尼帕病毒或亨德拉病毒。近期,新冠病毒在人类和动物群体中蔓延,对公共健康产生重要影响,并成为经济发展的主要动力。冠状病毒 (CoV) 与严重呼吸综合征 (SRAS)、中东呼吸综合征 (MERS) 和猪肉腹泻综合征 (SADS) 相关,人类负有责任猪的死亡率很高。还需要研究世界各地冠状病毒的识别、多样性的实际情况以及热带岛屿生态系统中冠状病毒的危险关联 精确。这些目标是研究冠状病毒在年轻人中的生态学和演化。在第一时间,我们将密切关注新冠病毒的爆发,以及印度洋西部岛的病毒进化史。对 1088 个生物学分子的分析,以证据为基础,首次展示了来自塞约特岛、桑比克岛、留尼汪岛和马达加斯加的冠状病毒的存在。冠状病毒感染的全球流行率为 8.0% ± 1.2%,在非洲大陆和岛屿之间存在显着变异,主要是在非洲大陆和岛屿之间。我们可以识别α-冠状病毒和β-冠状病毒的遗传多样性,但不能确定人类冠状病毒的系统发育过程(例如HCoV-NL63、HCoV-229E、MERS-CoV)。 Enfin是冠状病毒家族的系统发育史,支持了冠状病毒与印度洋和西方冠状病毒之间的长期共同进化历史。我们正在第二次研究冠状病毒动态感染的纵向研究,特别是留尼汪岛特有的小莫洛斯母体殖民地。根据在环境预防措施(粪便和鸟粪)中检测基因组病毒的情况,我们探索了连续几年的感染动态对人口结构的影响。蒙特伦特的一系列变化结果显示,感染流行情况是在季节中出现的,并且存在两张感染图片:lors de la colonization de la grotte de maternité (associé à uneauguration de la densité des hôtes), et en mois après le début de la parurition (associé à la perte d'immunité chez les nouveaux -nés)。冠状病毒在印度洋西部的冠状病毒进化合奏是主要由于病毒与病毒的共同进化而产生的,在岛屿内的环境下,它与岛内的物种形成了联系。肖韦苏里斯家庭。生态学和生物学事实证明了人口流动性感染的动态性,它是冠状病毒传播的风险,与其他国家的社区功能不同 - 澳大利亚查克岛的最新报道人口结构和时间变化。
GreenSight LEANIS 系统是一种模块化多无人机发射和回收系统,专为高动态移动平台而设计,例如在高海况或崎岖地形上高速行驶的小型无人或载人船舶和地面车辆。主要子系统包括多架长航时 GreenSight Dreamer 无人机、多自由度机械臂、可堆叠的无人机存储和充电舱、无人机跟踪传感器、通信和计算单元以及电源单元。LEANIS 的突出功能是它能够在高动态平台上运行,使用机载惯性传感器和机械臂来取消车辆的运动,为无人机提供稳定的连接点。此功能使 LEANIS 能够快速自主地发射和回收整个无人机群,而不会中断车辆上的现有操作。
TEPCE 是一颗 3U 立方体卫星,旨在探索使用电动力推进航天器的可行性。推进力是通过沿着连接两个航天器末端质量的长线(称为系绳)传导电流产生的。当航天器沿其轨道移动时,地球磁场会在磁场和系绳中的电子之间产生洛伦兹力,从而为航天器提供推力。它不需要化学或其他传统燃料源。TEPCE 是首批自给式电动力推进航天器之一。TEPCE 于 2019 年 6 月 25 日搭载 SpaceX Falcon Heavy 火箭发射。这是一艘成功的航天器,展示了可使航天器利用电动力学原理进行机动的机械和电气系统。
同一物种的动物经常表现出相似的行为,这些行为有利于适应它们的身体和环境。这些行为是由物种层面的进化时间尺度上的选择压力所塑造的,但每个个体使用不同的、独特构造的大脑产生这些行为。目前尚不清楚这些常见的行为适应性是如何从特定个体的特殊神经回路中产生的。在这里,我们假设一个物种的适应性行为需要特定的神经群体“潜在动态”。因此,这些潜在动态应该在一个物种的个体之间保留并可识别,无论每个个体的大脑有何特殊之处。使用来自猴子和小鼠运动皮层的神经群体记录,我们发现来自同一物种的个体在执行相同行为时具有惊人的相似神经动态。神经群体动态的相似性超出了皮层区域,延伸到背侧纹状体,这是一种进化上更古老的结构,并且当动物有意识地计划未来的运动而没有明显的行为时也是如此。这些保留的动态与行为相关,可以解码个体的预期和持续动作。我们认为这些新出现的神经群体动态是进化对大脑发育施加的限制的结果,反映了行为神经基础的基本特性。
三刺鱼 (Gasterosteus aculeatus) 是一种硬骨鱼,是进化生态学的模型生物,可用于实验室实验和自然实验。它因形态、行为和遗传学的巨大种内变异而受到特别重视。Swarup (1958) 的经典著作描述了单个淡水种群胚胎在实验室中的发育,但此次实验是在比许多刺鱼在野外会遇到的温度更高的温度下进行的,并且没有研究种群之间的变异。这里我们描述了两种来自苏格兰北尤伊斯特岛的同域咸水生态型刺鱼胚胎的发育情况,它们在 14˚C 的温度下长大,这大约是北尤伊斯特岛湖泊在繁殖季节的温度。这两种生态型分别是 (a) 一种大型的迁徙型,成年鱼全身覆盖着骨质盔甲;(b) 一种体型较小、盔甲较浅的型,常年居住在咸水泻湖中。通过在受精后每 24 小时监测一次胚胎,观察并拍摄了重要的发育特征,为北尤伊斯特岛生态型在此温度下的发育提供参考。孵化成功率超过 85%,定居和迁徙棘鱼之间没有差异,但迁徙卵的孵化时间明显早于定居生态型。我们的工作提供了一个框架,现在可用于比较可能在不同环境条件下生长的棘鱼种群,以帮助了解正常发育特征的广度并描述异常发育。
本文介绍了一种集成系统,通过战略性地管理 k-out-of-n :G,COLD 系统中电池的修复和补充,确保系留高空平台系统 (HAPS) 不间断电源供应。我们假设电池是相同的,它们的寿命彼此独立且呈指数分布。电池因故障而独立劣化并等待修复。当工作电池数量减少到 L ð L < n Þ 时,修复设施启动,当运行电池数量下降到 N ð N < L Þ 时,下达 n −k + 1 块电池的补货订单。我们推导出系统状态概率的显式解并分析关键性能指标。此外,我们采用粒子群优化 (PSO) 算法来确定所提优化问题的最佳成本,并使用 Morris 方法进行灵敏度分析。结果为 HAPS 的有效电池管理策略提供了见解,确保可靠的电源供应同时最大限度地降低成本。 [DOI: 10.1115/1.4067545]
a 法国留尼汪圣皮埃尔留尼汪大学中心医院内分泌与糖尿病科 b 法国留尼汪圣皮埃尔留尼汪大学中心医院 INSERM,CIC 1410 c 法国留尼汪圣皮埃尔留尼汪大学中心医院传染病科、内科、皮肤科 d 法国留尼汪圣克洛蒂尔德留尼汪大学 UMR PIMIT(CNRS 9192、INSERM U1187、IRD 249) e 法国留尼汪圣皮埃尔留尼汪大学中心医院临床与转化研究平台f 法国拉鲁尼翁大学医院中心生物化学系,圣皮埃尔,拉鲁尼翁,法国 g UMR 糖尿病动脉粥样硬化血栓形成治疗拉鲁尼翁印度洋 (D ' eTROI) (INSERM U1188),拉鲁尼翁大学 CYROI 平台,圣克洛蒂尔德,拉鲁尼翁,法国