。cc-by-nc-nd 4.0国际许可证。根据作者/资助者,它是根据预印本提供的(未经同行评审的认证),他已授予Biorxiv的许可证,以在
子宫接受性对于胚胎植入和成功怀孕至关重要。由于子宫接受性受损而导致的植入失败是导致不孕的重要原因,但目前尚无检测方法可以识别子宫内膜引起的不孕症。在这项研究中,我们证明了在接受期,不孕女性的子宫上皮中 microRNA - 124 - 3p 异常升高。我们开发了两种模型:一种基因诱导的子宫上皮特异性 microRNA - 124 - 3p 过表达小鼠模型和一种三维人类胚胎滋养外胚层 - 子宫内膜细胞共培养模型。利用这些模型,我们发现小鼠和人类中升高的 microRNA - 124 - 3p 会破坏子宫内膜上皮细胞的粘附和极性,从而阻止子宫上皮过渡到接受状态。这项研究将 microRNA - 124 - 3p 确定为子宫内膜引起的不孕症的诊断和治疗靶点。
Title: Gene expression responses of CF airway epithelial cells exposed to elexacaftor/tezacaftor/ivacaftor (ETI) suggest benefits beyond improved CFTR channel function Authors: Thomas H. Hampton 1 , Roxanna Barnaby 1 , Carolyn Roche 1 , Amanda Nymon 1 , Kiyoshi Ferreira Fukutani 1 , Todd A. MacKenzie 2 ,和Bruce A. Stanton* 1 Thomas H. Hampton博士1美国新罕布什尔州汉诺威市Geisel医学院微生物和免疫学系电子邮件: amandanymon@gmail.com Kiyoshi Ferreira Fukutani,博士电子邮件:kiyoshi.ferreira.fukutani@dartmouth.edu todd A. Mackenzie,博士2美国新罕布什尔州黎巴嫩达特茅斯盖塞尔医学院生物医学数据科学系 *通讯作者:布鲁斯·A·斯坦顿博士。微生物学和免疫学系Geisel医学院,达特茅斯520 Remsen Building Hanover NH 03755电话:603-646-5396电子邮件:bruce.a.stanton@dartmouth.edu摘要:Elexacaftor/tezacaftor/tezacaftor/ivacaftor/ivacaftor(eti fiikectik reigral inibral inibral inibristion conversion intrigry repription intrike)通过改善气道上皮细胞(AEC)分泌CFTR介导的CL-和HCO 3-导致肺功能的改善,频繁的病情较低。然而,研究表明,诸如ETI的组成部分Ivacaftor之类的CFTR调节剂对改善CFTR通道功能的CF细胞具有许多影响。由于对ETI对CF AEC基因表达的影响知之甚少,因此我们将原代人AEC暴露于ETI 48小时,并通过RNA-SEQ和QPCR询问转录组。eti增加了防御素基因表达(DEFB1)的观察结果,与CF患者(PWCF)肺部细菌负担减轻的报道一致。eti还降低了MMP10和MMP12基因表达,这表明ETI可能会减少蛋白水解诱导的肺破坏
图1基于转录组信息的癌细胞调用。(a)样品的解剖位置和突变模式。c,cecum; a,上升的结肠; D,下结肠; S,Sigmoid; R,直肠。突变(在括号中)A:APC,B:BRAF,C:CTNNB1,K:KRAS,P:TP53。(b)所有73,294个细胞的UMAP,由三种主要细胞类型室染色:上皮(蓝色),免疫(橙色)和基质细胞(绿色)。(c,d,f)仅上皮细胞的umaps。(c)颜色代码按样本原点和微卫星状态。癌症样本(MSI),红色;癌症样本(MSS),黄色;正常样本,灰色。(d)ICMS分配的癌症样品颜色代码; ICMS2(黄色),ICMS3(粉红色)或正常(蓝色),正常样品(未评分,灰色)。(f)癌症样品细胞的颜色代码。拷贝数状态异常(CNA; Orange),正常(CNN; Blue)或不适用(Na; Purple)当样本中的克隆不可分割时,样品(未得分,灰色)。(e,g)分别通过癌症样本分别汇总了ICMS和地震信息。(H)量化ICMS和UnderCNV之间的一致性呼吁,作为一个不适的情节,由患者进行了颜色编码,如所示。
自从发现诱导的多能干细胞(IPSC)技术以来,已经有许多尝试创建遗传性视网膜疾病(IRD)的细胞模型来研究致病过程以促进目标发现和验证活动。一致性仍然是确定这些发现的效用的关键。尽管一致性很重要,但质量控制指标仍未得到广泛使用。在这篇综述中,提供了用于利用IPSC技术生成感光器,视网膜色素上皮细胞和类器官疾病模型的工具包。在开发IPSC衍生的IRD模型(例如IPSC来源)时,讨论了重新编程方法,质量控制指标,控制策略和分化协议时的考虑。剖析了各种IPSC IRD模型,并讨论了基于IPSC的疾病建模的科学障碍,以概述当前方法和未来的方向。
研究气道上皮中严重急性呼吸综合征2(SARS-COV-2)的感染机制,并制定针对感染的有效防御策略很重要。为实现这一目标,建立适当的感染模型至关重要。因此,各种体外模型,例如细胞系和培养物,以及涉及表现出SARS-COV-2感染和遗传性人类动物的动物的体内模型,已被用作动物模型。但是,尚未建立动物模型,该模型允许在气道上皮生理环境下对人类细胞进行感染实验。因此,我们旨在建立一种新型的动物模型,该模型可以使用人类细胞进行感染实验。使用了人类诱导的多能干细胞衍生的气道上皮细胞移植的裸鼠(HIPSC-AEC大鼠),并通过喷洒含有SARS-COV-2峰值蛋白质的慢病毒假病毒来进行感染研究。感染后,免疫组织化学分析揭示了上皮和粘膜下层中GFP阳性感染的移植细胞的存在。在这项研究中,建立了包括人类细胞在内的SARS-COV-2感染动物模型通过呼吸模仿感染,我们证明HIPSC-AEC大鼠可以用作基础研究的动物模型,并开发了人类特异性呼吸道治疗方法的治疗方法。
IFN-γ的产生对于控制多种肠道感染至关重要,但是它对肠上皮细胞(IEC)的影响尚不清楚。隐孢子虫寄生虫仅感染上皮细胞,并且干扰素激活IEC中转录因子Stat1的能力是寄生虫清除所必需的。在这里,在感染过程中使用单细胞RNA测序在感染过程中促进IEC,发现在感染过程中,脑海中肠细胞的比例增加,并诱导IFN-γ依赖性基因信号,而未感染和感染细胞之间是可比的。这些分析是通过体内研究补充的,这表明寄生虫对照需要IEC的IEC表达。出乎意料的是,用IFN-γ的IFNG - / - 小鼠的治疗表明对这种细胞因子的IEC反应与寄生虫负担的延迟减少相关,但不会影响寄生虫的发展。这些数据集提供了对IFN-γ对IEC的影响的洞察力,并提出了一个模型,其中IFN-γ信号传导对未感染的肠上皮细胞对于控制隐孢子虫很重要。
SARS-COV-2逃避疫苗和治疗剂的持续进化强调了对具有高遗传障碍的创新疗法的需求。因此,在SARS-COV-2病毒生命周期中识别新的药理学靶标有明显的兴趣。通过无细胞的蛋白质合成和组装筛选鉴定出的小分子PAV-104最近以某种方式针对病毒组装来靶向宿主蛋白质组装机械。在这项研究中,我们研究了PAV-104抑制人类气道上皮细胞中SARS-COV-2复制的能力(AEC)。我们表明,在永生的AEC中,PAV-104抑制了> 99%的SARS-COV-2变体的感染,而在空气界面(ALI)中培养的原代AEC中,代表体内的肺微环境。我们的数据表明,PAV-104抑制SARS-COV-2的产生,而不会影响病毒入口,mRNA转录或蛋白质合成。PAV-104与SARS-COV-2 Nucleocapsid(N)相互作用,并干扰其寡聚化,阻止粒子组装。转录组分析表明,PAV-104逆转了I型干扰素反应的SARS-COV-2诱导以及已知支持冠状病毒复制的核蛋白信号传导途径的成熟。我们的发现表明PAV-104是Covid-19的有前途的治疗候选者,其作用机制与现有的临床管理方法不同。
摘要:视网膜是一种对视觉感知至关重要的中枢神经组织,并且非常容易受到环境损害。下脊椎动物视网膜下部激活内在再生机制,以应对由祖细胞专业人群调节的视网膜损伤。哺乳动物视网膜没有可用于激活再生的祖细胞/干细胞的群体,但包含可以将分化细胞的亚种群重新编程为可以将其重编程为视网膜干细胞的纤毛上皮细胞(CE)细胞。尽管具有再生潜力,但衍生自CE的干细胞表现出有限的重编程能力,可能与固有调节机制的表达有关。血小板激活因子(PAF)是在许多细胞中广泛表达的脂质介体,在干细胞增殖和分化中起重要作用。在哺乳动物发育过程中,PAF受体信号传导对视网膜祖细胞周期调节和神经元分化的重要作用,需要进一步研究。在这项研究中,我们的发现提出了CE细胞中PAF受体信号传导的动态作用,从而影响了干细胞特征和神经圈形成。我们表明,在衍生自PE细胞的视网膜祖细胞/干细胞中,PAF受体和与PAF相关的酶被下调。使用拮抗剂阻断PAFR活性增加了特定祖细胞标记的表达,从而揭示了对视网膜组织发育和维持的潜在影响。
1卫生科学研究所转化肿瘤学系,Dokuz Eylul大学,土耳其Izmir 35340; ASIM.LEBLEBICI@GMAIL.COM 2 EGE大学医学院妇科与产科系,土耳其Izmir 35340; cerensancar@gmail.com 3美国西雅图市系统生物学研究所,美国华盛顿州98109; bahar.tercan@isbscience.org 4计算机工程系,工程学院,杜库兹·埃鲁尔大学,土耳其伊兹米尔35340; zerrin@cs.deu.edu.tr 5 5伊兹米尔(Izmir),迪库兹·埃鲁尔大学(Dokuz Eylul University)医学院公共卫生系; mehmet.e.arayici@gmail.com 6 Dokuz Eylul University医学院内科学系,土耳其Izmir 35340; Enderellidokuz@hotmail.com 7 Dokuz Eylul University肿瘤学研究所转化肿瘤学系,土耳其Izmir 35340; ybaskin65@gmail.com *通信:nuri.yildirim@ege.edu.tr;电话。 : +90-50676342991卫生科学研究所转化肿瘤学系,Dokuz Eylul大学,土耳其Izmir 35340; ASIM.LEBLEBICI@GMAIL.COM 2 EGE大学医学院妇科与产科系,土耳其Izmir 35340; cerensancar@gmail.com 3美国西雅图市系统生物学研究所,美国华盛顿州98109; bahar.tercan@isbscience.org 4计算机工程系,工程学院,杜库兹·埃鲁尔大学,土耳其伊兹米尔35340; zerrin@cs.deu.edu.tr 5 5伊兹米尔(Izmir),迪库兹·埃鲁尔大学(Dokuz Eylul University)医学院公共卫生系; mehmet.e.arayici@gmail.com 6 Dokuz Eylul University医学院内科学系,土耳其Izmir 35340; Enderellidokuz@hotmail.com 7 Dokuz Eylul University肿瘤学研究所转化肿瘤学系,土耳其Izmir 35340; ybaskin65@gmail.com *通信:nuri.yildirim@ege.edu.tr;电话。: +90-5067634299