图 1:使用国际 10-20 系统从 (a) 矢状面和 (b) 轴平面 (c) 头皮角度看到的 64 个电极配置表示。注意:A= 耳垂,C = 中央,Pg = 鼻咽,P = 顶叶,F = 额叶,Fp = 额极和 O = 枕叶。
摘要目的:用于上限LIMB神经居住的机器人设备可以增加实践强度,通常依靠具有有限能力的基于视频游戏的培训策略来个性化培训和整合功能培训。本研究显示了机器人任务特定培训(TST)方案的开发,并评估所达到的剂量。材料和方法:混合方法研究。上肢的3D机器人装置可在神经康复期间使用治疗师使用。第一阶段允许临床医生为TST定义专门的会话协议。在第二阶段应用方案,并测量了达到的剂量。结果:第一阶段(n = 5):一种特定的协议,使用降级进行评估,然后进行定制的被动运动,然后开发了主动运动实践。第二阶段:该协议已成功应用于所有参与者(n = 10)。干预持续时间:4.5±0.8周,会话频率:1.4±0.2次/周,会话长度:42±9mins,会话密度:39±13%,强度:214±84个运动/会话,难度:DN = 0.77±0.1(归一化的距离),距离= 6.3±= 6.3±23±23±23±23±23±23±useverseversemberseversempesseans(spresseverseverseverseverseans)。sessions的密度和强度在参与者之间是一致的,但是观察到了明显的难度差异。在干预中未观察到指标的变化。结论:机器人系统可以通过调节参与者的需求和能力的实践难度来支持高治疗强度的TST。
可穿戴机器人上肢矫形器 (ULO) 是辅助或增强用户上肢功能的有前途的工具。虽然这些设备的功能不断增加,但对用户控制可用自由度的意图的稳健和可靠检测仍然是一项重大挑战,也是接受的障碍。作为设备和用户之间的信息接口,意图检测策略 (IDS) 对整个设备的可用性具有至关重要的影响。然而,这方面及其对设备可用性的影响很少根据 ULO 的使用环境进行评估。进行了范围界定文献综述,以确定已通过人类参与者评估的应用于 ULO 的非侵入式 IDS,特别关注与功能和可用性相关的评估方法和发现及其在日常生活中特定使用环境的适用性。共确定了 93 项研究,描述了 29 种不同的 IDS,并根据四级分类方案进行了总结和分类。与所述 IDS 相关的主要用户输入信号是肌电图 (35.6%),其次是手动触发器,例如按钮、触摸屏或操纵杆 (16.7%),以及上肢节段的残余运动产生的等长力 (15.1%)。我们确定并讨论了 IDS 在特定使用环境中的优缺点,并强调了在选择最佳 IDS 时性能和复杂性之间的权衡。通过调查评估实践来研究 IDS 的可用性,纳入的研究表明,主要评估了与有效性或效率相关的客观和定量的可用性属性。此外,它强调了缺乏系统的方法来确定 IDS 的可用性是否足够高以适合用于日常生活应用。这项工作强调了针对用户和应用程序选择和评估用于 ULO 的非侵入式 IDS 的重要性。对于该领域的技术开发人员,它进一步提供了有关IDS的选择过程以及相应评估协议的设计的建议。
原始文章对基于Tele的监督进行为期8周的可行性研究,以对上肢运动性能和功能能力的剧本练习,Subhasish Chatterjee。Abstrac t Background Telerehabilitation,使偏远地区的患者更容易获得康复,并且在运输挑战方面已被广泛实施,以恢复中风。随着通信技术的发展,Telerehabilitation正在成为一个更可行的选择。仍然未知,但是,这种分娩策略在中风患者的康复方面有多成功。在此前瞻性,单组,治疗性试验中的材料和方法,根据选择标准招募了12例患者。在基线签署了签署的患者同意书后,对患者进行了身体评估,并熟悉患者。患者通过现场会议,每周3天接受了基于电视的监督,每周3天,每周3天进行30分钟的监督。在切换任务之前,有30秒的休息时间。分别在基线,第4周和8周干预的基线时采取了结果指标,FMA UE和中套。计算描述性统计数据以获取基线时的人口统计信息和结果度量。为了评估数据的正态性,采用了Shapiro-Wilk测试。由于发现数据是正态分布的,因此进行了重复测量ANOVA和事后分析,以评估小组内基线,第4周和第8周的数据。Bonferroni校正用于解决多个比较。p值小于0.05被认为表明统计学上的显着差异。结果每个结果度量都表明有很大的改善(p <0.05)。根据组内分析,在FMA UE和Mesupes(p <0.001)中观察到了明显的区别。结论基于Tele的以任务为导向的练习有效地改善了中风患者的上肢运动性能和功能能力。
一个可以检测到行动和解码计划运动意图的系统,可以帮助所有可以计划运动但无法实施的受试者。在本文中,通过使用脑电图(EEG)信号来研究电动机计划活动,目的是解码运动制备阶段。在执行不同动作(肘部流量/扩展,前臂旋转/supination/supination/suplination/open/loth/collos)的过程中,可公开可用的61个通道EEG信号,右上肢录制了15个健康受试者的EEG信号。 引入了一种新型系统,用于静止与静止和前期时期的分类。 对于每个时期,所提出的系统都会通过光束成形和连续的小波变换(CWT)生成电动机源信号的时间频率(TF)图,然后将所有映射嵌入体积中并用作输入到深CNN中。 拟议的系统成功地歧视了前提下的平均准确度为90.3%(最低74.6%,最大100%),在文献中的表现优于可比较的方法,而在鉴别期间的VS vs vs vs等待中的平均准确度为62.47%。 所达到的结果鼓励通过深度学习方法在时间频域中的源级别调查电动机计划。可公开可用的61个通道EEG信号,右上肢录制了15个健康受试者的EEG信号。引入了一种新型系统,用于静止与静止和前期时期的分类。对于每个时期,所提出的系统都会通过光束成形和连续的小波变换(CWT)生成电动机源信号的时间频率(TF)图,然后将所有映射嵌入体积中并用作输入到深CNN中。拟议的系统成功地歧视了前提下的平均准确度为90.3%(最低74.6%,最大100%),在文献中的表现优于可比较的方法,而在鉴别期间的VS vs vs vs等待中的平均准确度为62.47%。所达到的结果鼓励通过深度学习方法在时间频域中的源级别调查电动机计划。
背景:中风是最常见的脑血管疾病之一,通常影响60岁及60岁以上的人。它导致各种需要运动和认知康复的残疾。中风后康复对恢复至关重要,特别是对于上肢障碍,这会影响大约80%的中风幸存者。常规康复经常面临诸如成本,可及性和患者依从性之类的障碍。相比之下,EHealth Technologies通过提供可访问,具有成本效益和引人入胜的康复解决方案提供了有希望的选择。目的:尽管许多系统的评论探讨了基于技术的康复的各个方面,用于中暑上肢恢复,但显然缺乏这些发现的全面综合。此差距提出了挑战,这主要是由于关注特定技术,这使理解这些干预措施的整体有效性变得复杂。因此,临床医生和研究人员可能会发现很难整体评估该领域,这可能会阻碍临床实践中明智的决策。本评论综合了从系统评价中评估eHealth技术干预措施对中风后的上肢恢复的有效性的证据。进行了两个主要问题:(1)基于EHEADH技术的疗法是否比中风康复的常规疗法更有效?(2)基于低成本技术的康复的主要临床考虑因素是什么?方法:使用基于人群,干预,比较,结果和研究设计(PICOS)框架的预定义纳入标准,在PubMed,PubMed,Scipus,Scopus,Embase和Google Scholar中进行了全面的文献搜索。包括英文发表的无日期限制的系统评价。Prisma(用于系统评价和荟萃分析的首选报告项目)流程图指导研究选择。使用多个系统评价(AMSTAR 2)标准评估方法学质量。结果:总共筛选了1792个记录,从而在2019年至2023年之间发表了7项系统评价。这些评论涵盖了95项研究,涉及2995名参与者,急性,亚急性和慢性中风阶段平均年龄为58.8岁。干预措施包括Telerebilitation,移动健康(MHealth)应用程序,增强现实(AR),虚拟现实(VR),可穿戴设备和Exergames。与常规疗法结合使用AR和VR表现出潜在的好处(例如,AR显示上肢功能的显着改善,标准化的平均差异为0.657; P <.001),而独立有效性的证据尚未确定,由于在研究设计,干预方案和结果测量中,由于异质性而导致异质性。由于方法上的局限性,大多数评论被评为质量较低。结论:EHealth Technologies有望通过在提供引人入胜的干预措施时解决诸如成本和可及性之类的障碍,以增强上肢康复后。然而,该领域仍然没有足够的证据来建立明确的疗效。未来的研究应集中于标准化方案,优化诸如剂量和任务特异性之类的神经康复原则,并改善方法论严格,以更好地评估这些干预措施的长期影响。
主动上肢外骨骼是神经恢复的潜在强大工具。该潜力取决于几种基本控制模式,其中一种是透明度。在这种控制模式下,外骨骼必须遵循人类运动而不会改变它,从理论上讲,这意味着无效的相互作用工作。达到透明度的水平高,尽管不完美,既需要一种适当的控制方法,又需要对外骨骼对人类运动的影响进行深入评估。本文基于识别外骨骼动力学的识别,或者是在力反馈控制或结合下引入了三种不同的“透明”控制器的评估。因此,这些控制器可能会通过设计明显诱导不同水平的透明度。进行的调查可以更好地理解人类如何适应一定是不完事的透明控制器。一组14名参与者受到这三个控制者的束缚,同时在副臂平面进行运动。随后的分析是根据相互作用,运动学,肌电图和人体工程学反馈问卷进行的。结果表明,在执行透明的控制器较少的情况下,参与者的策略往往会引起相对较高的相互作用工作,并具有较高的肌肉活动,从而导致运动学指标的敏感性很小。换句话说,截然不同的残留互动工作并不一定会引起非常不同的运动运动学。这样的行为可以通过自然的人类倾向来解释以维护其首选的运动学的努力,应在将来的透明控制器评估中考虑到这一点。
该Molina临床政策(MCP)旨在促进利用管理过程。政策不是治疗的补充或建议;提供者完全负责该成员的诊断,治疗和临床建议。它表达了莫利纳(Molina)确定某些服务或供应是为了确定付款适当性的目的,在医学上是必要的,实验性,研究或化妆品。在医学上有必要的特定服务或供应的结论不构成涵盖此服务或供应的代表或保证(例如,将由Molina支付给特定成员)。成员的福利计划确定覆盖范围 - 每个福利计划定义了涵盖哪些服务,哪些被排除在外,哪些受到美元上限或其他限制。成员及其提供者将需要咨询成员的福利计划,以确定是否存在适用于本服务或供应的任何排除或其他福利限制。如果该政策与成员的福利计划之间存在差异,则福利计划将管理。此外,可以根据州,联邦政府或医疗保险和医疗补助成员的适用法律要求要求承保范围。CMS的覆盖范围数据库可在CMS网站上找到。覆盖范围指令和现有国家承保范围确定(NCD)或地方覆盖范围确定(LCD)的标准将取代本MCP内容,并为所有Medicare成员提供指令。在政策批准和出版时所包含的参考文献是准确的。
1 机械与制造工程学院,国立科技大学(NUST),伊斯兰堡 45200,巴基斯坦;sanwer.bmes19smme@student.nust.edu.pk(SA);asim.waris@smme.nust.edu.pk(AW);omer@smme.nust.edu.pk(SOG);j.iqbal@ceme.nust.edu.pk(JI)2 奥克兰理工大学健康与环境科学学院,健康与康复研究所,奥克兰 0627,新西兰;nusrat.shaikh@aut.ac.nz 3 物理、工程与计算机科学学院,赫特福德大学,哈特菲尔德 AL10 9AB,英国; amit.pujari@ieee.org 4 阿伯丁大学工程学院,阿伯丁 AB24 3FX,英国 5 新西兰脊骨医学院脊骨疗法研究中心,奥克兰 1060,新西兰 6 奥尔堡大学健康科学与技术系感觉运动互动中心,9000 奥尔堡,丹麦 * 通讯地址:imran.niazi@nzchiro.co.nz
了解大脑编码上肢运动如何对于辅助技术中的控制机制至关重要。辅助技术,尤其是脑机界面(BMI)的进步突出了解码运动意图和运动学对有效控制的重要性。基于EEG的BMI系统由于其非侵入性和诱导神经可塑性的潜力而增强运动康复结果的潜力而显示出希望。基于EEG的BMI显示了解码运动意图和运动学的潜力,但研究表明与实际或计划的运动的相关性不一致,对实现精确和可靠的假体控制提出了挑战。此外,个体的预测性脑电图模式的变异性需要个性化调整以提高BMI效率。整合多个生理信号可以提高BMI的精度和可靠性,为更有效的运动康复策略铺平道路。研究表明,大脑活动在运动过程中适应引力和惯性约束,突出了神经适应生物力学变化在创建辅助设备控制系统中的关键作用。本综述旨在全面概述与生理和辅助上肢运动相关的解密神经活动模式的最新进展,从而强调了在神经疗程和脑镜界面发展中未来探索的途径。