摘要 简介和假设 盆腔器官脱垂是绝经后妇女最常见的病理状况之一。目前仍然缺乏完全有效和安全的手术技术,特别是在晚期顶端缺损方面。该视频的目的是介绍一种针对晚期生殖器脱垂(根据 POP-Q 量表为 III 期和 IV 期)女性的腹腔镜治疗新技术。该技术涉及使用筋膜网片将子宫固定于腹前壁。方法我们使用真人手术演示来描述腹腔镜下使用筋膜网片将子宫固定到腹前壁的方法。结果该视频提供了使用筋膜网片在腹腔镜下将子宫固定到腹前壁的分步方法。该视频可用于教育和培训那些进行女性盆腔重建手术的人员。结论根据我们的经验,腹腔镜下使用筋膜网片将子宫悬吊至腹前壁的技术是治疗晚期盆腔器官脱垂的一种有效、安全且简单的方法。
通过查找 AR 600-9 图 B-1 中的士兵腹围值(步骤 2 中列出的值)和体重(磅数)(步骤 3 中列出的值)来确定体脂百分比。体脂百分比是 AR 600-9 图 B-1 中列出的腹围值和体重(磅数)的截距值。这就是士兵的体脂百分比。
图 1 直升机 01 投掷绳索(威廉山火灾 1999).......................................................................................................1 图 2 Simplex 型号 304 灭火机腹舱........................................................................................................................4 图 3 Conair 85 腹舱.........................................................................................................................................................5 图 4 泡沫在投掷区的扩散.........................................................................................................................................7 图 5 投掷模式术语的关键.............................................................................................................................8 图 6 从 Simplex 投掷系统投掷的阻燃剂的足迹.........................................................................................10 图 7 从 Conair 投掷系统投掷的阻燃剂的足迹.........................................................................................11 图 8 从 Simplex 腹舱中排出的阻燃剂显示出四个明确的流动.........................................................................................................................13 图 9 从 Simplex 腹舱中投掷管理的连续图像.....................................................................................................14 图 10 从 Conair 腹舱中投掷管理的连续图像........................................... 15 图 11 Conair(左)和 Simplex 投放系统的撤离过程比较,显示投放过程中的控制水平 ............................................................................. 16 图 12 Conair 投放系统的滴落控制b(Conair 滴落 3 号) ............................................................................. 17 图 13 Simplex 投放系统的滴落控制(Simplex 滴落 3 号) ............................................................................. 18 图 14 Simplex 投放系统的滴落流侧视图 ............................................................................................. 20 图 15 Conair 投放系统的滴落流侧视图 ............................................................................................. 20 图 16 Simplex 投放系统的滴落控制正视图 ............................................................................................. 22 图 17 Conair 投放系统的滴落控制正视图 ............................................................................................. 22 图 18 Simplex Model 304 Fire Attack 腹舱的假定撤离过程 ............................................................. 25 图 19 Conair腹部水箱................................................................. 25
哺乳动物的视觉系统由平行的分层专业途径组成。不同的途径在使用更适合支持特定下游行为的表示形式方面是专门的。在特定的情况下,最清楚的例子是视觉皮层的腹侧(“ What what”)和背(“ Where”)途径的专业化。这两种途径分别支持与视觉识别和运动有关的行为。至今,深度神经网络主要用作腹侧识别途径的模型。但是,尚不清楚是否可以使用单个深ANN对两种途径进行建模。在这里,我们询问具有单个损失函数的单个模型是否可以捕获腹侧和背途径的特性。我们使用与其他哺乳动物一样的小鼠的数据探讨了这个问题,这些途径似乎支持识别和运动行为。我们表明,当我们使用自我监督的预测损失函数训练深层神经网络体系结构时,我们可以在拟合鼠标视觉皮层的其他模型中胜过其他模型。此外,我们可以对背侧和腹侧通路进行建模。这些结果表明,应用于平行途径体系结构的自我监督的预测学习方法可以解释哺乳动物视觉系统中看到的一些功能专业。
药物滥用是全球范围内的严重健康问题,造成了医疗、社会和经济问题,而药物治疗方法却极为有限。1,2 成瘾性药物针对大脑成瘾中心的中脑皮质边缘多巴胺 (DA) 系统,包括腹侧被盖区 (VTA)、前额叶皮质和伏隔核 (NAc)。腹侧被盖区包含最大的多巴胺神经元群,在奖励相关和目标导向行为(如认知和情绪过程)中起着重要作用。3 将 GDNF 注入腹侧被盖区 (VTA)(一个对成瘾很重要的多巴胺能大脑区域)可阻止对慢性可卡因或吗啡的特定适应以及可卡因的奖励效应。 4 可能在这种保护机制中发挥关键作用的一个因素是神经胶质细胞源性神经营养因子 (GDNF),它是中脑多巴胺 (DA) 神经元发育和残留的主要生长因子。 5 最近的研究表明,GDNF 被认为是某些成瘾类型的负调节因子。 6–8 具体来说,我们之前发现一些 miRNA 在腹侧被盖区 (VTA) 和伏隔核中甲基苯丙胺滥用中起关键作用。我们发现 miRNA 上调了 GDNF 基因。在这项研究中,我们旨在展示 GDNF 靶基因网络。
那么,一个悬而未决的问题涉及两条通路得出的对象表征之间的关系。一种观点认为,这两条通路得出独立的表征,这种说法可以轻松解释报道的腹侧通路和背侧通路之间的功能分离(即感知与行动)(Goodale、Milner、Jakobson & Carey,1991)。鉴于加工的独立性,一条通路的损伤应该不会影响另一条通路得出的表征。然而,这种独立架构既没有得到功能研究(Freud、Rosenthal、Ganel & Avidan,2015;Garcea、Chen、Vargas、Narayan & Mahon,2018;Mahon、Kumar & Almeida,2013)的支持,也没有得到解剖学研究(Yeatman et al., 2014)的支持,这些研究揭示了两条通路之间存在强大的结构和功能联系。另一种解释是,背侧通路表征(特别是对于没有视觉运动成分的任务)仅仅是腹侧通路计算的结果。这种观点预测腹侧通路的损伤会对背侧通路获得的表征产生不利影响,但反之则不然。最近的研究结果挑战了这种观点,因为背侧通路的形状敏感性可能在时间上先于腹侧通路形状敏感性的出现(Collins et al., 2019)。此外,猴子背侧通路(即尾部顶内沟 (CIP))的暂时失活会导致腹侧通路的 fMRI 激活降低,并导致 3D 感知的知觉缺陷(Van Dromme、Premereur、Verhoef、Vanduffel & Janssen, 2016)。最后,第三个可能的观点表明两条通路都获得物体表征。这些表征可能相同,也可能不相同,如果是后者,则可能编码有关物体的不同信息,而这些信息可能服务于不同的功能目标 (Freud, Behrmann, & Snow, 2020)。然而,无论哪种情况,这两条通路都是相互作用的,因此,任何一条通路的损伤都会影响另一条通路得到的表征。在之前的论文中,我们还研究了背侧通路和腹侧通路之间的相互状态,并证明,在腹侧通路受损后患有视觉失认症的患者中,背侧通路仍然对物体的 3D 结构表现出敏感性,即使在双侧腹侧病变非常广泛的情况下也是如此 (Freud, Ganel, et al., 2017)。这一发现可以被视为对第一个解释,即独立物体表征的支持。然而,值得注意的是,这项研究只关注一个高级视觉属性,那就是形状(即 3D 结构)。此外,fMRI 分析只关注背侧通路上的两个 ROI,因此,目前尚不清楚背侧通路上的其他区域是否以及在多大程度上会受到腹侧通路损伤的影响。在本研究中,我们试图对右腹侧通路损伤后患有视觉失认症 SM 的患者的两条视觉通路进行全面检查。通过采用参数置乱操作(Collins 等人,2019 年;Freud、Culham 等人,2017 年;Freud、Plaut 和 Behrmann,2019 年;Grill-Spector 等人,1998 年;Lerner、Hendler、Ben-Bashat、Harel 和 Malach,2001 年;
个人如何从正面和负面的奖励反馈中学习并据此做出决策,可以通过强化学习的计算模型形式化(Sutton and Barto 1998)。RL 模型的核心是奖励预测误差 (RPE),它反映了已实现奖励和预期奖励之间的差异。从神经上讲,预测误差由中脑多巴胺的阶段性释放发出信号(Hollerman and Schultz 1998,Schultz 2013),同时纹状体和其他大脑区域的神经活动也相应出现(Pine, Sadeh et al. 2018)。人类功能性神经影像学研究报告了中脑、纹状体和几个皮质区域中 RPE 的相关性(O'Doherty, Dayan et al. 2004,D'Ardenne, McClure et al. 2008,Daw, Gershman et al. 2011,Deserno, Huys et al. 2015)。 RL 神经行为相关性的个体差异确实与人类多种多巴胺测量方法有关,包括药理学操作(Pessiglione、Seymour 等人 2006 年、Westbrook、van den Bosch 等人 2020 年、Deserno、Moran 等人 2021 年)、神经化学正电子发射断层扫描 (PET)(Deserno、Huys 等人 2015 年、Westbrook、van den Bosch 等人 2020 年、Calabro、Montez 等人 2023 年)和特定基因型(Frank、Moustafa 等人 2007 年、Dreher、Kohn 等人 2009 年)。
基于奖励的学习和决策是了解注意力缺陷多动障碍(ADHD)的症状的主要候选人。但是,只有有限的证据可用于多动症中所见变化的神经计算基础。这涉及动态变化的环境中的灵活行为适应,这对于患有多动症的人来说是具有挑战性的。先前的一项研究表明,青少年多动症的选择转换升高,伴随着内侧前额叶皮层中的学习信号。在这里,我们使用概率逆转学习实验(fMRI)研究了与年龄和性别匹配的对照(n = 17)相比,我们研究了ADHD(n = 17)的年轻人(n = 17)。任务需要持续学习,以指导灵活的行为适应变化的奖励意外事件。为了解开行为数据的神经计算基础,我们使用了加固学习(RL)模型,该模型为fMRI数据的分析提供了信息。ADHD患者的表现比对照组较差,尤其是在逆转之前的试验中,即奖励调解稳定时。这种模式是由“嘈杂”选择切换产生的,无论先前的反馈如何。RL建模显示,ADHD患者的负反馈降低了增强敏感性和增强的学习率。在神经水平上,这反映在ADHD中左后顶叶皮层中选择概率的降低表示。由于样本量相对较小,这些神经计算发现仍然是初步的。建模显示了对未选择选项的学习的边缘降低,这与学习信号的边缘减少相似,该学习信号纳入了左侧腹侧纹状体中的未选择选项。在一起,我们表明,多动症中的灵活行为受损是由于选择过度切换(“超灵活性”),这取决于学习环境,这可能是有害的或有益的。在计算上,这是由于对加强的敏感性而引起的,我们检测到了注意力控制网络中的神经相关性,特别是在顶叶皮层中。
灵长类动物外侧前额叶皮层 (PFC) 功能组织的一个模型认为,该区域以背侧/腹侧方式组织,分别服务于空间和物体工作记忆。或者,有人提出,外侧 PFC 的背侧/腹侧细分反映了对工作记忆中的信息执行的处理类型。我们使用事件相关 fMRI 方法测试了这一假设,该方法可以区分在单个试验中时间分离的行为子成分期间发生的功能变化。受试者执行延迟反应任务,包括两种类型的试验,要求他们:(1) 在延迟期内保留字母序列(维持)或 (2) 在延迟期内将序列重新排序为字母顺序(操作)。在每个受试者中,在两种类型的试验中,延迟期间的背外侧和腹外侧 PFC 都发现了活动。然而,背外侧 PFC 活动在操作试验中更活跃。这些发现与 PFC 中工作记忆的功能组织处理模型一致。