人类视觉皮层通过功能各异的皮层区域中的一系列分层计算实现视觉感知。在这里,我们介绍了一种人工智能驱动的方法来发现视觉皮层的功能映射。我们将人类大脑对用功能性磁共振成像 (fMRI) 测量的场景图像的反应系统地与一组经过优化以执行不同场景感知任务的多样化深度神经网络 (DNN) 相关联。我们发现 DNN 任务和大脑区域之间存在沿着腹侧和背侧视觉流的结构化映射。低级视觉任务映射到早期大脑区域,3 维场景感知任务映射到背侧流,语义任务映射到腹侧流。这种映射具有高保真度,九个关键区域中 60% 以上的可解释方差得到解释。总之,我们的结果提供了一种新颖的人类视觉皮层功能映射,并展示了计算方法的强大功能。
神经影像学的最新进展使我们更好地了解了人类奖赏系统的功能及其在成瘾患者中的紊乱 [8]。奖赏通路最突出的神经解剖学结构包括前扣带皮层 (AAC)、眶额皮层、腹侧纹状体 (VS) 内的 NAc 和腹侧被盖区 (VTA) [9]。奖赏通路,有时也称为中脑边缘通路,将中脑的 VTA 与前脑基底神经节的 VS 连接起来。从中脑边缘通路释放到 NAc 的多巴胺可调节对奖赏刺激的动机和渴望,并促进强化和与奖赏相关的运动功能学习 [10]。NAc 中中脑边缘通路及其输出神经元的失调在成瘾的发展和维持中起着重要作用 [11]。 NAc 细分为边缘和运动亚区,称为 NAc 外壳和 NAc 核心。NAc 的外壳占据其内侧、腹侧和外侧部分,而核心占据其中央和背部。NAc 中的中棘神经元从 VTA 的多巴胺能神经元和海马、杏仁核和内侧前额叶皮质的谷氨酸能神经元接收输入。当它们被这些输入激活时,中棘神经元的投射会将 GABA 释放到腹侧纹状体上。NAc 位于边缘和中边缘多巴胺能结构、基底神经节和边缘前额叶皮质之间的中心位置。NAc 的这一中心位置影响奖赏相关行为和药物自我给药行为,以及动机、学习和适应性行为 [10, 11]。常见的滥用物质,如可卡因、酒精和尼古丁,已被证明会增加中脑边缘通路内细胞外多巴胺的水平,尤其是 NAc 内的多巴胺水平 [12]。这些中脑边缘通路的多巴胺能激活伴随着奖赏感。这种刺激-奖赏关联表现出对消退的抵抗,并增加了重复导致消退的相同行为的动机。针对中脑边缘系统的神经外科手术已减少或调节 NAc 活动。这些手术包括立体定向消融
▪在两个肺中,都观察到在右肺顶端段中具有亚腹和实质重置的多个固体结节,并被观察到右肺和实质性(SUVMAKS:12,31)。此外,还检测到大量未显示FDG参与和10 mm及以下的结节。
摘要:前脑是脊椎动物中枢神经系统最复杂的区域,其发育组织存在争议。我们使用亲脂性染料和 Cre 重组谱系追踪对胚胎鸡前脑进行了命运映射,并建立了大脑生长的 4D 模型。我们通过多重 HCR 揭示了归因于祖细胞区域的各向异性生长的模块化模式。形态发生以朝向眼睛的方向生长、丘脑前部和背侧端脑的更等长扩张以及腹侧细胞向前移动到下丘脑为主。在鸡中进行的命运转换实验以及在鸡和小鼠中进行的比较基因表达分析支持将下丘脑置于从端脑延伸到丘脑内界带 (ZLI) 的结构的腹侧,背腹轴在 ZLI 的底部变形。我们的研究结果对广为接受的前脑组织前体模型提出了挑战,并提出了一种替代的“三部分下丘脑”模型。
摘要背景深部脑刺激 (DBS) 正在被研究作为治疗难治性强迫症 (OCD) 的方法。许多不同的大脑目标正在接受试验。这些目标中的几个例如腹侧纹状体(包括伏隔核 (NAc))、腹侧囊、下丘脑脚和终纹床核 (BNST))属于同一网络,在解剖学上彼此非常接近,甚至重叠。关于特定目标中的各种刺激参数将如何影响周围解剖区域并影响 DBS 的临床结果的数据仍然缺失。方法在一项对 11 名接受 BNST DBS 的参与者的初步研究中,我们通过针对患者特定的电场模拟来研究哪些解剖区域受到电场的影响,以及这是否与临床结果相关。我们的研究结合个体患者12和24个月随访时的刺激参数以及术前MRI和术后CT图像数据,计算电场分布,建立个体刺激场的解剖模型。结果 12和24个月随访时,BNST内刺激的个体电刺激场相似,主要涉及内囊前肢(ALIC)、内囊膝部(IC)、BNST、穹窿、前内侧苍白球外核(GPe)和前连合。在12个月的随访中,腹侧ALIC和前内侧GPe的耶鲁-布朗强迫症量表测量的临床效果与刺激之间存在统计学上显着相关性(p <0.05)。结论 许多正在研究的强迫症目标在解剖学上接近。从我们的研究可以看出,脱靶效应是重叠的。因此,ALIC、NAc 和 BNST 区域的 DBS 可能被认为是对同一靶标的刺激。
克莱尔·哈德森(Clare Hudson)。一种简单的方法,可以在原位杂交后在神经板阶段识别海腹脑谱系细胞。Simon G. Sprecher。大脑发育。方法和协议,施普林格,第325-345页,2020年,《分子生物学中的方法》,978-1-4939-9731-2。10.1007/978-1-4939-9732-9_18。hal-02322828
工作记忆与前额叶-海马振荡同步相关,但同步大脑节律的内源性模式是否可用于影响未来选择仍不得而知。在这里,我们开发了一个脑机接口,用于检测强和弱的 θ 同步状态,以进行任务和神经操控。强前额叶-海马 θ 相干性状态的特点是前额叶 θ 节律增强,并用于增强记忆引导的选择。在后续实验和分析中,我们表明强前额叶-海马 θ 相干性与任务参与、前额叶神经元对腹中线丘脑 θ 的相位调制以及一组选定神经元的兴奋性增强有关。通过对腹中线丘脑的光遗传学操控,我们产生了前额叶 θ 节律并增强了前额叶-海马振荡同步性。这些实验表明,前额叶-海马振荡同步可用于偏向记忆引导的选择,并为通过连贯性假设进行交流提供支持证据。
简介:s症孢子是细胞内寄生虫的门,主要感染了海洋无脊椎动物,尤其是Annelida和Mollusca。Ascetospora是分类层次结构中相对较新的门。发现了抗腹寄生虫的重要性作为软体动物感染和造成金氏症对牡蛎产生的财务影响引起了重现疾病的发现。
大脑的摘要节奏是由多个频率的神经振荡产生的。这些振荡可以分解为与特定生理过程相关的不同频率间隔。实际上,可解码频率间隔的数量和范围是通过抽样参数确定的,通常被研究人员忽略。为了改善情况,我们在开放的工具箱上报告了带有图形用户界面,用于解码大脑系统的节奏(Dream)。我们提供了梦想的示例,以研究神经(自发性大脑活动)和神经行为(扫描剂头部运动)振荡的特定于频率的性能。Dream解码了头部运动的振荡,并发现年幼的孩子在所有五个频率间隔中都比大孩子更多地移动头部,而男孩在7至9岁时移动的人数超过了女孩。有趣的是,较高的频带包含更多的头部运动,并且显示出更强的年龄相关性,但性运动相互作用较弱。使用来自人类Connectome项目的数据,Dream将这些神经振荡的幅度映射到了多个频段中,并评估了其重测的可靠性。静止状态的大脑将其自发振荡的振幅从空间上的振幅从腹侧颞区的高振幅排名到腹侧 - 枕骨区域的低位,而频带从低至高增加到高,而在壁和腹侧额叶区域的部分则相反。较高的频段表现出更可靠的振幅测量值,这意味着较高频段的振幅的个体间变异性更大。总而言之,Dream添加了一个可靠且有效的工具,可将人脑功能从多频窗口映射到脑波中。
