智能反射面 (IRS) 是一种数控超表面,包含大量无源反射元件。通过重新配置每个元件的反射系数,IRS 可以控制无线信道,以提高通信系统的覆盖范围和容量 [1–3]。然而,要通过 IRS 增强信道特性,获取准确的信道状态信息是不可避免的。因此,在本文中,我们通过利用固有信道结构来解决 IRS 辅助多输入多输出 (MIMO) 系统的上行信道估计问题。相关工作:早期关于 IRS 辅助通信系统的信道估计工作主要集中于非结构化信道模型 [4],采用最小二乘或线性最小均方误差估计器 [5]。然而,在较高频段(例如毫米波或太赫兹频段),移动站 (MS)-IRS 和 IRS-基站 (BS) 信道在角域中都表现出很强的稀疏性 [5]。这一观察结果促使 IRS 辅助信道估计算法探索信道的固有稀疏性,从而减少导频开销 [5]。最近的估计器通过考虑额外的
多址信道描述了多个发送者尝试使用某种物理介质将消息转发给单个接收者的情况。在本文中,我们考虑了这种介质仅由单个经典或量子粒子组成的场景。为了精确地比较量子信道和经典信道,我们引入了一个操作框架,其中所有可能的编码策略都只消耗一个粒子。当用于通信时,这种设置体现了用单个粒子构建的多址信道 (MAC)。多方通信任务包括 N 个空间分离的发送者( A 1 , A 2 ,· · · AN )和一个接收者( B )(参见图 1 (a)),其中发送者 A i 位于路径 i 上并希望发送从集合 A i 中抽取的经典消息 ai,接收者 B 获得一些属于集合 B 的输出数据 b,这些数据取决于发送者选择的消息集合( a 1 , a 2 ,· · · ,a N )。理想情况下,b 应该是所有 N 条消息的完美副本,即 b = ( a 1 , a 2 , · · · , a N )。然而在实践中,一些物理限制会阻碍完美的通信。在这种情况下,通信由转移概率 p ( b | a 1 , · · · a N ) 描述。分布 p ( b | a 1 , · · · a N ) 统称为 MAC [ 1 ],即无线通信中所说的上行信道 [ 2 ]。最终,概率 p ( b | a 1 , · · · a N ) 由用于传输信息的特定物理系统决定。我们在此提出的问题是,在仅使用单个粒子实现通信信道且其内部自由度都不可访问的限制下,可以生成哪些 MAC 。更准确地说,信息只能以外部关系自由度进行编码,例如粒子在时空中占据的哪些特定点。我们感兴趣的是比较当使用量子粒子和经典粒子以这种方式传输信息时可以实现的 MAC。在比较经典和量子 MAC 之前,我们根据系统具有的不同级别的共享随机性定义并比较了不同的经典 MAC。这些经典 MAC 分别表示为 CN 、 C ′ N 和 conv[ CN ],代表没有共享随机性、部分共享随机性和完全共享随机性的情况(如图 1 所示)。我们表明,这些 MAC 在具有二进制输入和输出的通信场景中是相同的,即当 |A i | = |B| = 2 时,而对于更一般的情况,它们完全不同。为了方便讨论,我们还引入了所有这些 MAC 的超集,我们称之为可分离 MAC,C (sep) N ,它由具有概率分解 p ( b | a 1 , · · · , a N ) = PN i =1 pigi ( b | ai ) 的 MAC 组成。我们分析了这些 MAC 的结构,并表明它们与二进制情况下更受限制的家族相同。我们的主要结果涉及提供 N 方经典 MAC 的完整表征,这些 MAC 可以从单个经典粒子和受限制的局部数保持 (NP) 操作构建而成。简而言之,NP 操作具有膨胀,其中总粒子数得以保留。主要发现是这些 MAC 完全以消失的二阶干扰项来表征。更准确地说,特定的线性组合