(U) 第 a 章:SPACOL 计划和 DEFS.MAC(20 世纪 60 年代初)...... 29 (U) 新国防部 ELINT 指令下的管理行动..................................................... . 29 (U) 第一个主要的通用收集系统..................................................... . 31 (U) 陆基收集..................................................................... . 33 (U) 海基收集..................................................................... . 35 (U) 机载收集..................................................................... . 36 (U) 非常特殊的努力......................................................................... . 39 (U) NSA 计划 11 出现......................................................................... . 40 (U) 实施......................................................................................... . 41 (U) 收集操作协调成形......................................................................... . 43 (U) CIA 和 DoD 增加各种类型的收集......................................................... . 47 (U) 其他外国导弹/空间技术情报来源......................................................... 48 (U) 这些上行链路怎么样?................................................ . 50 (U) 关键结果................................................................ . 51 (U) 20 世纪 60 年代总结.......•................................................................• . 52 (U) 20 世纪 60 年代初期的经验教训........................................ . 52
EGNOS 欧洲地理导航覆盖系统 E-OTD 增强型观测时差 GAGAN GPS 辅助地理增强导航(或 GPS 和地理增强导航) GLONASS 全球导航卫星系统 GNSS 全球导航卫星系统 IPDL-OTDOA 空闲期下行链路观测到达时差 LCS 定位服务 MSAS 多功能卫星增强系统 NA-ESRD 北美紧急服务路由数字 NA-ESRK 北美紧急服务路由密钥 NANP 北美编号方案 QZSS 准天顶卫星系统 SBAS 卫星增强系统 U-TDOA 上行链路到达时差 WAAS 广域增强系统 注:在本文件中,文中使用的首字母缩略词要么以其完整展开形式阅读,要么以其字母名称阅读,没有一致的原则。
Iris 2.2 版是一款兼容立方体卫星/小型卫星的转发器,由美国国家航空航天局 (NASA) 喷气推进实验室 (JPL) 开发,是一种体积小、质量轻、功耗低、成本低的深空软件/固件定义电信子系统。Iris 是一款深空转发器,采用 COTS 级组件,用于 NPR 7120.8 技术演示和 D 类太空飞行项目。Iris V2.2 的特点包括体积为 0.5 U,质量为 1.1 kg(包括 LNA 和 SSPA),在 3.8 W 射频输出(仅用于接收的 10.3 W DC 输入)下完全转发时功耗为 34 W DC,并且能够与 NASA 的深空网络 (DSN) 在 X 波段频率(7.2 GHz 上行链路、8.4 GHz 下行链路)上进行互操作,用于指挥、遥测和导航。
从历史上看,随着商用双向无线电用户数量的增长,信道间隔不断缩小,必须分配更高频率的频谱来满足需求。更窄的信道间隔和更高的工作频率需要更严格的频率公差,无论是发射器还是接收器。1940 年,当只有几千台商用广播发射机在使用时,500 ppm 的公差就足够了。今天,数百万部蜂窝电话(工作在 800 MHz 以上的频段)中的振荡器必须保持 2.5 ppm 或更高的频率公差。896-901 MHz 和 935-940 MHz 移动无线电频段要求基站的频率公差为 0.1 ppm,移动站的频率公差为 1.5 ppm。容纳更多用户的需求将继续要求越来越高的频率精度。例如,NASA 的个人卫星通信系统概念将使用类似对讲机的手持终端、30 GHz 上行链路、20 GHz 下行链路和 10 kHz 信道间隔。终端的频率精度要求是 10 8 的几分之一。
从历史上看,随着商用双向无线电用户数量的增长,信道间隔不断缩小,必须分配更高频率的频谱才能满足需求。更窄的信道间隔和更高的工作频率需要更严格的频率公差,无论是发射器还是接收器。1940 年,当只有几千台商用广播发射机在使用时,500 ppm 的公差就足够了。今天,数百万部蜂窝电话(工作在 800 MHz 以上的频段)中的振荡器必须保持 2.5 ppm 或更高的频率公差。896-901 MHz 和 935-940 MHz 移动无线电频段要求基站的频率公差为 0.1 ppm,移动站的频率公差为 1.5 ppm。容纳更多用户的需求将继续要求越来越高的频率精度。例如,NASA 的个人卫星通信系统概念将使用类似对讲机的手持终端、30 GHz 上行链路、20 GHz 下行链路和 10 kHz 信道间隔。终端的频率精度要求是 10 8 的几分之一。
摘要 - 该论文研究了单个握手用户向卫星群的上行链路传输,重点是利用卫星间链接以实现合作信号检测。研究了两例:一个案例具有完整的CSI,另一个具有卫星之间的部分CSI。用容量,开销和位错误率进行比较两种情况。此外,在两种设计中都分析了通道估计误差的影响,并提出了强大的检测技术将通道不确定性处理到一定水平。显示了每种情况的性能,并与传统的卫星通信方案进行了比较,其中只有一个卫星可以连接到用户。我们的研究结果表明,轨道上总共有3168颗卫星的拟议星座可以通过与12个卫星与500 MHz的带宽合作并占据800 Mbits/sec的容量。相比之下,对于最近的卫星,具有相同系统参数的常规卫星通信方法的容量明显低于150 mbits/sec。
SpaceX 正在利用其在空间系统制造、设计和运营方面积累的专业知识来开发 Starlink,这是一个卫星星座,旨在为新西兰和全球任何地方提供高速、低延迟、价格具有竞争力的宽带服务。SpaceX 的第一代星座由 4,400 多颗非地球静止轨道 (NGSO) 卫星和采用先进通信和空间运营技术的广泛地面基础设施组成。SpaceX 已在该系统上投资了数十亿美元,目前平均每月发射 120 颗卫星,同时建造网关和最终用户终端天线。Starlink 旨在通过优化其与其他授权卫星和地面用户灵活共享频谱的能力来高效利用无线电频谱资源,包括通过先进的波束成形和数字处理技术。SpaceX 目前将卫星连接到 Ku 波段的客户用户终端,用于上行链路和下行链路频率,网关链路位于 Ka 波段。
Milstar 系统由地球同步轨道上的多颗卫星组成。Milstar 可在南北极之间提供 24 小时不间断的全球覆盖。Milstar 系统由三个部分组成:空间(卫星)、地面(任务控制和相关通信链路)和终端(用户部分)。这些部分将使用低数据速率 (LDR) 和中数据速率 (MDR) 波形以指定的数据速率提供通信,速率范围从 75 bps 到大约 1.5 Mbps。空间部分由在轨卫星系统组成,利用交联通信实现卫星间通信。任务控制部分控制在轨卫星,监测飞行器健康状况,并提供通信系统规划和监测。该部分具有很高的生存能力,既有固定控制站,也有移动控制站。系统上行链路和交联链路将在极高频率范围内运行。终端部分包括所有服务使用的固定和地面移动终端、船舶和潜艇终端以及机载终端。空间系统司令部(SSC)负责采购空间和地面部分以及空间部队终端部分。
Pixxel Space Technology, Inc. 请求授权在非地球静止轨道部署和运行三颗高光谱地球成像卫星,这些卫星被称为 FFLY 星座,将在地球探测卫星服务 (EESS) 和空间操作服务中运行。Pixxel 请求授权在以下频段运行:2025-2110 MHz 用于图像任务和遥测、跟踪和指挥 (TT&C) 上行链路;2200-2290 MHz 用于备用 ESSS 和 TT&C 下行链路;8025-8400 MHz 用于 EESS 下行链路。FFLY 卫星将部署到 590 公里(+/- 25 公里)的太阳同步低地球轨道,并在 565 公里(+15 公里)或以下高度运行五年。Pixxel 请求放弃美国频率分配表,使用 2200-2290 MHz 频段与美国境外的地面站进行 TT&C 下行链路通信。Pixxel 还请求放弃委员会修改后的 NGSO 处理轮次规则、放弃第 25.217(b) 条下的默认服务规则以及放弃 NGSO 系统的里程碑和保证金要求。
6.3 带有私人电视选项的私人 A/G 通信............................................................................................. 6.3-1 6.4 CAPCOM 电话通信............................................................................................. 6.4-1 6.5 数字语音对讲系统 (DVIS) 改进型冷启动............................................................................................. 6.5-1 6.6 语音播放(已删除).................................................................................... 6.6-1 6.7 KSC 语音通信控制(已删除).................................................................... 6.7-1 6.8 PABX 拦截......................................................................................................... 6.8-1 6.9 语音通信标准......................................................................................................... 6.9-1 6.10 TDRS/GN 切换............................................................................................. 6.10-1 6.11 TDRS早期移交................................................................................ 6.11-1 6.12 在高倾斜度进入肯尼迪航天中心期间的 TDRS 移交..................................................................................... 6.12-1 6.13 NASCOM 优先事项............................................................................... 6.13-1 6.14 空对地语音管理....................................................................................... 6.14-1 6.15 地面语音 - 应急管理......................................................................................... 6.15-1 6.16 接入地面语音上行链路.................................................................................... 6.16-1 6.17 任务控制中心-莫斯科/任务控制中心-休斯顿(MCC-M/MCC-H)地面通信 - 应急管理......................................................... 6.17-1 6.18发射前 A/G 语音检查...................................................................................... 6.18-1 6.19 保留................................................................................................... 6.19-1 6.20 保留................................................................................................... 6.20-1 6.21 应急着陆点(CLS)通信......................................................................................................... 6.21-1 6.22 远程操作 - 将远程飞行控制器连接到数字语音对讲系统......................................................... 6.22-1