抽象冰川和雪融化是溪流的主要水源,以及喜马拉雅西部上印度河上游地区的河流。然而,该冰川盆地的径流幅度预计随着流域的可用能量而变化。在这里,我们使用基于物理的能量平衡模型来估计Chandra盆地上部冰川的表面能量和表面质量平衡(SMB),从2015年到2022年。观察到强烈的季节性,净辐射是夏季的主要能量通量,而在冬季则以潜在而明智的热通量为主导。估计的Chandra盆地冰川上部的平均年度SMB为-0.51±0.28 m W.E.a -1,从2015年到2022年的7年中的累积SMB为-3.54 mW.E。我们发现,冰川的方面,坡度,大小和升高等地理因素有助于研究区域内SMB的空间变异性。发现,需要增加42%的降水量来抵消Chandra盆地上部冰川的空气温度升高而导致的额外质量损失。
a。平均营养需求(BNM)....................................................................................................................................................................................................................................................... 52 b。 Nutritional reference for the population (RNP) ................................................ 52 tsp.令人满意的贡献(AS)..................................................................................................................................................................................................................................................................................................................................................................................... 53 d。上部安全限制(LSS).........................................................................................................................................................................................................................................................................................................................................................................................................................................................................Energy expenditure ..................................................................................................... 54 3.Proteins ......................................................................................................................... 54 4.carbohydrates ...................................................................................................................................... 57 5.lipids ............................................................................................................................................ 60 6.fibers .................................................................................................................................. 63 7.水..
gmcmi.com › uploads › 2017/05 PDF 2017 年 5 月 31 日 — 2017 年 5 月 31 日 更多 GMC 人体工程学:大型顶置式和反置式……喷气式飞机的结构。上部侧板和车顶成型。
当前的操作是关闭下部人字闸门,使水池平衡,并设置上部挡水板,以控制船闸室。操作将于 1 月 19 日至 21 日进行。工程和运营部门正在继续分析损坏程度,并正在采取其他行动来阻止水流并控制船闸。
1 炮盾 • 铝制外壳,用于对火炮部件进行防风雨、防弹和防生化防护。上部结构 [炮室] 在系统运行期间无人值守。 • 支撑检修门、系统通风、液压集管箱和与防护罩一体的减压缓冲器。 2 枪尾 • 固定炮管内的子弹以便射击,连接电动击针,并在射击时容纳爆炸压力。 3 炮口防护罩 • 提供动态外壳,覆盖和密封火炮的仰角弧,并为炮管和弹壳弹出门安装防风雨端口。 4 炮尾机构 • 液压活塞驱动的连杆,用于在射击或哑火事件后升高和降低枪尾和提取推进剂所需的部件。 5 炮管外壳 • 支撑炮管的后膛端。 • 安装后坐和反后坐缸,以及阀控气体喷射系统,以清除炮管中的残留气体。 6 炮架 • 为上部火炮提供底环和耳轴支撑。 • 安装传动机构和仰角动力驱动器、上部蓄能器系统、滑动组件和防护罩。• 为火炮的传动机构和仰角功能提供轴线。7 支架 • 为传动机构轴承和齿轮环的固定部件提供安装在甲板上的平台。8 托架 • 升至火炮仰角轴线,将垂直方向的弹药从上部提升机转移到火炮滑动装置的指向角,以便于后膛装填。9 滑动装置 • 火炮发射部件的主要组件,包括托架、枪尾盖和枪尾机构;火炮身管外壳;空壳提取器和托盘。• 安装火炮仰角轴线的耳轴;安装仰角齿轮扇形装置。
图 1 中央复合体 (CX) 和相关神经纤维网的解剖结构。(a) CX、外侧复合体 (LX) 的内侧球 (MBU) 和外侧球 (LBU) 的 3D 重建正面图。(b) (a) 中显示的 3D 重建的侧视图。CX 由中央体 (CBU) 的上部、中央体 (CBL) 的下部、原脑桥 (PB) 和成对结节 (NO) 组成。(c) (a) 中显示的 3D 重建的示意横截面,其中显示了前唇 (ALI)。后沟 (pg) 延伸在中央体和 NO 之间。后视交叉 (PCH) 位于中央体和 PB 之间。腹沟纤维复合体 (vgfc) 位于 CBL 和 ALI 之间。(d – h) 通过 CX 的光学切片,用突触蛋白染色。 (d) CBL 被分为九个垂直切片(切片边界用虚线表示一个半球)。(e)每个结节由一个上部单位(NOU)和一个下部单位(NOL)组成。(f)胆囊(GA)是 LX 内的一个小的细长的神经纤维网,位于峡部 2(IT2;边界用黑色虚线表示)。(g)CX 前方光学切片中上部神经纤维网的外观(边界用虚线表示)。(h)前唇(ALI)位于中央体前方。a,前部;l,外侧;LCA,蘑菇体侧萼;MB,蘑菇体;MCA,蘑菇体内萼;m,内侧;p,后部;SIP,上中间原大脑;SLP,上外侧原大脑;SMP,上内侧原大脑。比例尺 = 50 μ m (a – d,f,h), 20 μ m (e), 100 μ m (g) [彩色图可在 wileyonlinelibrary.com 上查看]
肩钩这种易于使用的肩钩可让您随身携带XSDRIVE,然后将其抬起并暂时将其放置在某个地方。它符合人体工程学的重点是使您的背部免于压力。肩钩的长度是可适应性的,下部是灵活的,可以完美。上部和下部可以快速拆卸,以方便存储。在长时间和短期工作日穿着很舒服。订购号。380-5875