太阳能混合系统由光伏 (PV) 和电池存储组成,可在并网和离网条件下为建筑物提供电力。为了改善不间断运行,可以将不带电池的并网光伏系统与太阳能混合系统集成,以增强孤岛条件下的发电量。然而,许多混合并网/离网逆变器不允许其他能源在离网模式下为电池充电。然后需要对并网逆变器进行特殊的功率削减控制,以防止功率过大。在本文中,介绍了一种结合智能电表和太阳辐照度传感器的功率削减控制器。并网逆变器的设定点会根据负载消耗和光伏功率的变化自动调整。基于 DIgSILENT PowerFactory 软件上的时间扫描功率流计算,检查了太阳能混合和并网光伏系统之间的孤岛运行性能。结果表明,与单独使用太阳能混合系统相比,结合并网光伏系统有助于提高电池使用效率。因此,这可以在电网电压损失期间延长建筑物的持续供电时间。
摘要:耕种的花生(Arachis hypogaea L.)是全球重要的油和现金作物。一百个烟和种子的重量是花生产量的重要组成部分。在当前的研究中,为了揭开一百个pod重量(HPW)和百分子重量(HSW)的遗传基础,从JH5(JH5,大豆荚和种子重量和种子重量)之间的十字架开发了一个重组近交系(RIL)人群,并使用M130(小荚和种子重量)(小荚和种子重量),并用来识别QTLS和HPW和HPW。使用SSR,AHTE,SRAP,TRAP和SNP标记构建了一个集成的遗传链接图。该地图由3130个遗传标记组成,分配给20个染色体,并覆盖1998.95 cm,平均距离为0.64 cm。在此基础上,HPW和HSW的31个QTL位于7个染色体上,每个QTL占表型方差的3.7–10.8%(PVE)。其中,在多个环境下检测到了七个QTL,并且在B04和B08上发现了两个主要的QTL。值得注意的是,染色体A08上的QTL热点在2.74 cm的遗传间隔内包含7个QTL,其中包括0.36 MB物理图,包括18个候选基因。Arahy.d52S1Z,Arahy.ibm9rl,Arahy.W18Y25,Arahy.cplc2w和Arahy.14H.14H可能在调节花生荚和种子重量中发挥作用。这些发现可以促进进一步研究培养花生中影响豆荚和种子重量的遗传机制。
其他产品特性 • 威慑监视 • 整体式多协议 (Coaxitron ® 、RS-422 Pelco D 和 Pelco P 协议) 接收器 / 驱动器 • 使用 Pelco D 协议的数字位置和变焦控制和反馈 • 整体式摄像机外壳 • 可变速度 0.1 至 100°/秒 • 360° 连续水平旋转 • +33° 至 -83° 倾斜范围 • 可在 90 英里/小时的风速下工作,可承受高达 130 英里/小时的风速 • 水平预置位速度在 50 英里/小时的风速下为 100°/秒,在 90 英里/小时的风速下为 50°/秒 • 可变扫描速度 (1 至 40°/秒) • 用于选定竞争协议的转换板 • 易于安装;快速简便的电气连接 • 24 VAC 或 120/230 VAC 可选 • 专为最低限度的维护而设计,无需调整齿轮 • 完整的连续工作保修 • 850 nm 和 950 nm 主动红外照明聚焦算法(仅限 24X 和 35X 型号)
在糖组学研究所,我们开发了一种新型全寄生虫疫苗平台技术,最初是在 Michael Good AO 教授的领导下为疟疾开发的。我们的疟疾疫苗技术有两种形式:1) 化学减毒全寄生虫候选疫苗;2) 新型全寄生虫脂质体候选疫苗。
作为完成价值的一部分,“开放”意味着首先,我们应该始终努力在可能的情况下为每个人提供包容性环境。这是在我的角色上进行技术讨论的,我们始终以与我们希望自己一样的尊重水平对待每个人。开放的另一部分是对每个人都真正诚实,这适用于我的日常角色,无论是技术讨论,冲刺计划还是回顾,只有几个。
学校工作人员,父母/护理人员和卫生专业人员合作管理确定的健康风险。学校在个人情况下为学生提供了常规或紧急卫生支持程序的支持。学生的支持记录在个人健康计划和/或紧急健康计划(健康计划)上,这些计划由卫生专业人员制定和更新。学校工作人员管理和实施健康计划。
混音,或在不记入原始作者的情况下为任何目的调整此材料。公共领域的预印本(未通过同行评审认证)。它不再受版权限制。任何人都可以合法地共享,重复使用,版权所有者将此版本放置在2023年8月5日发布。 https://doi.org/10.1101/2023.07.31.23293462 doi:medrxiv preprint
*根据需要进行调整和 /或补充,以满足性能标准方向,将20克粉末悬挂在1升蒸馏水中,然后浸泡。煮沸,不断搅拌。分配到合适的容器中,并在121°C的高压釜中对15分钟进行消毒。描述这种含有牛奶的媒介比其他标准媒体更丰富营养。但是,介质的乳白色使早期观察有时很难。由于其较低的琼脂浓度,它可用于浇注板法或扩散板法。技术准备了样品的10倍连续稀释液,并从每个稀释液中以重复的等分试样服用1 mL,并将其放入无菌培养皿中。倒大约每个板中的无菌冷却培养基(约45°C)。通过在图8中旋转板轻轻混合。将不受干扰的板留在倒置的位置。孵育时间和温度取决于正在研究的微生物的类型。通常进行有氧计数,在30°C下孵育3天。在24、48和72小时检查板。APHA提出的板数方法由倒板法组成,即将熔融琼脂倒在50°C的板上,这些平板上包含稀释的样品。在32-35°C下孵育48小时后进行最终计数。对于具有其他温度需求的微生物,已经提出了以下温育:在30±1°C,在45°C下为2-3天,在55°C下为2天,在20°C,在5-7°C下为20°C,7-10天,3-5天。质量控制样品稀释液用1/4林格的溶液,缓冲肽水或最大恢复稀释剂根据其性质制备。倒板计数方法比表面接种方法更优选,因为它给出了更高的计数,尽管后者有助于菌落的隔离和恢复。