摘要氧化锌(ZnO)纳米颗粒是具有广泛应用潜力的多功能材料。此RE搜索的目的是合成ZnO纳米颗粒,利用甲醇中的Indigofera Tinctoria叶提取物作为一种生态友好的还原和稳定剂。合成在提取物质量方面的变化,即1 g(z1),5 g(z5)和10 g(z10),以评估提取物浓度对纳米颗粒特性的影响。ftir,XRD,SEM,XRF和UV-VIS DRS用于表征样品。FTIR分析结果显示,波数为422-430 cm -1处的典型ZnO峰。 XRD分析表明,纳米颗粒具有带有空间群p63mc的六边形wurtzite晶体结构。 随着提取物浓度在折痕中的浓度下降,总计16.55 nm(Z1),15.21 nm(Z5)和13.75 nm(Z10)。 带隙能量从3.19 eV(Z1)增加到3.21 eV(Z10),表明在较高的提取浓度下光活性增加。 通过SEM进行的形态分析表明,所有样品均表现出准球形形状。 eds表征显示仅识别Zn和O元素。 XRF结果证实了ZnO纳米ticle的原始性,ZnO含量为98.99%。 这项研究为ZnO纳米颗粒的合成中的Indigofera Tinctoria叶提取物的潜在用途提供了新的见解,可用于各种功能材料和技术应用。FTIR分析结果显示,波数为422-430 cm -1处的典型ZnO峰。XRD分析表明,纳米颗粒具有带有空间群p63mc的六边形wurtzite晶体结构。随着提取物浓度在折痕中的浓度下降,总计16.55 nm(Z1),15.21 nm(Z5)和13.75 nm(Z10)。带隙能量从3.19 eV(Z1)增加到3.21 eV(Z10),表明在较高的提取浓度下光活性增加。通过SEM进行的形态分析表明,所有样品均表现出准球形形状。 eds表征显示仅识别Zn和O元素。 XRF结果证实了ZnO纳米ticle的原始性,ZnO含量为98.99%。 这项研究为ZnO纳米颗粒的合成中的Indigofera Tinctoria叶提取物的潜在用途提供了新的见解,可用于各种功能材料和技术应用。通过SEM进行的形态分析表明,所有样品均表现出准球形形状。eds表征显示仅识别Zn和O元素。XRF结果证实了ZnO纳米ticle的原始性,ZnO含量为98.99%。这项研究为ZnO纳米颗粒的合成中的Indigofera Tinctoria叶提取物的潜在用途提供了新的见解,可用于各种功能材料和技术应用。这些结果还为开发绿色合成方法开发了纳米材料具有特征的纳米材料的机会,可以根据应用需求进行定制。
通过使用光伏 (PV) 电池板自己发电,家庭对电网的依赖性降低。但是,由于光伏发电量和用电量不匹配,与电网中多余电力的经济补偿相比,节省账单带来的经济效益通常较低。实施分时电价或容量电价可能会降低经济效益,因为当没有光伏发电时,晚上的价格和峰值负荷可能会更高。固定电池可能会在电价低时储存光伏发电量,并在高峰价格时释放,从而增加光伏自用量。但是,对过剩发电量实施上网电价并不鼓励产消者投资电池。在本文中,我们评估了当前法国补贴计划下光伏投资的盈利能力。然后,我们提出了一项替代政策,该政策保证为光伏和电池投资提供前期购买补贴,但没有上网电价。基于这一替代政策,我们模拟了不同定价的各种光伏和电池容量的经济效益。我们表明,在分时电价和容量电价下,光伏自用投资在上网电价下比电池溢价更有利可图。尽管如此,与实施电池溢价相比,目前的补贴计划成本较高。因此,我们提出了一些政策建议来改进补贴计划。
摘要:混合有机 - 无机金属卤化物钙钛矿(HOIP)由于其出色的光电特性,已成为一种有希望的可见光感应材料。尽管有优势,但克服商业化的稳定问题仍然是一个挑战。在此,通过全瓦库姆工艺证明了一个极为稳定的光电探测器,并用CS 0.06 fa 0.94 pb(I 0.68 BR 0.32)3 per-Ovskite制造。在标准的一个太阳太阳照明下,光电探测器达到的电流密度高达1.793×10-2 a cm -2,同时在零偏置电压下保持电流密度低至8.627×10-10 - 10 a cm -2。线性动态范围(LDR)和瞬态电压响应与基于硅的光电探测器(Newport 818-SL)相当。最重要的是,该设备在一个太阳太阳照明下不断暴露后,保持了95%的初始性能的95%。这些出色的结果的成就促成了全面的沉积过程,从而提供了具有很高稳定性和良好均匀性的薄膜,从而延迟了退化过程。通过阻抗光谱法进一步研究了降解机制,以揭示在不同暴露时间下光电探测器中的电荷动力学。关键词:钙钛矿,光电探测器,稳定性,特定探测率,热蒸发</div
ASAP,2020 年 5 月 电池技术正在成为解决因日照条件变化而导致的太阳能光伏发电不稳定问题的解决方案。清晨和傍晚时分,可用于光伏发电的日照 (日照) 较少,中午时分日照最强。图 1 显示了万里无云天气下光伏电站的每日发电情况。太阳能光伏技术将阳光转化为电能,而云层会减少可用于光伏发电的日照,这进一步使光伏发电水平复杂化。换句话说,电力储存对于平稳的光伏电力供应至关重要。目标是创建一个光伏电力系统,提供可靠的、按需 (可调度) 的高峰期电力供应 (参见图 2)。这需要光伏电力储存,而电池是一种储存选择。目前,电池储存用于削峰填谷,目前的设施有两到四个小时的储存时间 (参见图 3)。光伏电力的电池储存在几个方面都很有吸引力。电池的优点是可靠性、响应速度快、维护成本低,而且只需要几英亩的土地。电池存储设施可以位于光伏站点,以优化光伏向市场中心的传输。存储光伏直流电的过程是高效的,因为电池可以接收
摘要:近年来,光子计算的显着进步突显了需要光子记忆,尤其是高速和连贯的随机记忆。应对实施光子记忆的持续挑战才能充分利用光子计算的潜力。基于刺激的布里鲁因散射的光子传声记忆是一种可能的解决方案,因为它一致地将光学信息传递到高速下的声波中。这样的光声内存具有巨大的潜力,因为它满足了高性能光随机记忆的关键要求,因为它的相干性,芯片兼容性,频率选择性和高带宽。但是,由于声波的纳秒衰减,到目前为止,迄今为止的存储时间仅限于几纳秒。在这项工作中,我们通过实验增强光声内存的固有存储时间超过1个数量级,并在存储时间为123 ns后连贯地检索光学信息。这是通过在4.2 K处高度非线性纤维中使用光声记忆来实现的,从而使内在的声子寿命增加了6倍。我们通过使用直接和双同性恋检测方案测量初始和读数光学数据脉冲来证明我们的方案能力。最后,我们分析了4.2 - 20 K范围内不同低温温度下光声记忆的动力学,并将发现与连续波测量值进行了比较。关键字:布里渊散射,光子神经形态计算,光学记忆,非线性光学,低温■简介延长的存储时间不仅对光子计算,而且对需要长声子寿命的Brillouin应用程序,例如光声过滤器,真实时延迟网络和微波光子学中的合成器。
征文 – IEEE ICCET 2025 主题:下一代多址网络的多维调制过去十年见证了数据吞吐量和连接节点数量的大幅增加,最近的研究也预示了下一代多址网络的这些增长。这些巨大的增长无疑将导致对频谱效率和能源效率日益严格的要求。为了满足这两个要求,多维调制,例如索引调制、基于媒体的调制、基于RIS/反射调制、OTFS和子载波数调制,近年来引起了研究人员的关注。与传统的幅度相位调制方案不同,稀疏调制除了经典的幅度相位星座图之外,还采用了一个或多个调制维度,从而形成更高维的调制方案,这在适当的系统配置下大大提高了频谱效率。通过多维调制,只有一部分媒体资源或功能块会被激活,以形成独特的激活模式。因此,除了由数据星座符号调制的比特流之外,激活模式本身还可用于调制额外的比特流。作为一个处于起步阶段的范例,仍有大量开放的研究问题等待解决,进一步的研究活动对于最终推动稀疏调制进入实际实施阶段至关重要。除了理论研究外,还需要解决实际实施的问题。鉴于上述将多维调制应用于 6G 通信的优势以及剩余的研究问题,本专题旨在汇集来自不同背景的学术界和工业界的顶尖研究人员,以吸引原创和高质量的出版物,解决与多维调制相关的理论和实践问题。鼓励在会议、研讨会或研讨会论文集上发表的论文的扩展版本供考虑。感兴趣的主题我们欢迎涉及以下领域的投稿,但不限于此: 人工智能和学习技术辅助多维调制 大规模 MIMO 和可重构智能表面 (RIS) 辅助多维调制 毫米波中的多维调制、太赫兹和光无线通信 水下光/声通信的多维调制 距离感知和空间频率相关的多维调制 高移动性的多维调制 多维调制的物理安全和保密相关问题 多用户和协作中继网络中的多维调制 基于多维调制的通信系统的性能分析