基于多模态神经生理时间序列(多导睡眠图 PSG)的计算睡眠评分已在临床上取得了令人瞩目的成功。仅使用 PSG 中单个脑电图 (EEG) 通道的模型尚未获得同样的临床认可,因为它们缺乏快速眼动 (REM) 评分质量。这一缺陷是否可以完全弥补仍然是一个重要问题。我们推测,主要的长短期记忆 (LSTM) 模型不能充分表示远处的 REM EEG 段(称为时期),因为 LSTM 将这些段压缩为来自独立过去和未来序列的固定大小向量。为此,我们引入了 EEG 表示模型 ENGELBERT(electro En cephalo G raphic E poch L ocal B idirectional Encoder R epresentations from T Transformer)。它联合关注过去和未来的多个 EEG 时期。与语言中的典型标记序列(注意力模型最初就是为其设计的)相比,夜间脑电图序列很容易跨越 1000 多个 30 秒的时期。重叠窗口上的局部注意力将关键的二次计算复杂度降低到线性,从而实现了从一小时以下到全天的灵活评分。ENGELBERT 至少比现有的 LSTM 模型小一个数量级,并且易于在一个阶段从头开始训练。它在 3 个单脑电图睡眠评分实验中超越了最先进的宏 F1 分数。REM F1 分数被推高到至少 86%。ENGELBERT 实际上将与基于 PSG 的方法的差距从 4-5 个百分点 (pp) 缩小到不到 1 pp F1 分数。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
r的规定原则适用于辐射源温度从室温以下到5000°F的设备。辐射源温度分为四组,如下:•低温•低强度•中等强度•高强度低温或面板加热和冷却系统的源温度高达300ºF。典型的低温来源是条件空间的天花板和/或地板。此应用的能源可以是电阻线或膜元素,热水或温暖的空气。低温辐射加热用于住宅应用和办公室,商业或工业建筑。这些系统通常与可变空气体积(VAV)系统一起应用。第6章具有有关低温(面板加热和冷却)系统的进一步信息。低强度源温度范围为300至1200ºF。典型的低强度加热器安装在天花板上。它可以由4英寸钢管长20到30英尺。插入管末端的气体燃烧器会提高管子温度,并且由于大多数单元配备了反射器,因此发出的辐射能量被定向到条件空间。中强度源温度在1200至1800ºF之间。典型的来源包括多孔矩阵,燃气红外或金属护套,电动单元。高强度辐射源温度范围为1800至5000ºF。典型的高强度单元是电阻温度为4050ºF的电气反射灯。低强度,中等和高强度红外加热器通常在飞机机库,工厂,仓库,发现,温室和体育馆中频繁应用。它们被应用于这样的开放区域,装载码头,赛车架,跑步餐厅,户外餐厅以及游泳池周围。红外加热器也用于降雪,凝结控制和工业过程加热。反射器经常用于控制特定模式中辐射的分配。使用红外线时,环境的特征是:l。由红外加热器创建的高温方向辐射场2.一个由墙壁和/或封闭表面组成的低温辐射场3.型气温通常低于常规对流加热器的气温。
帝国县规划与发展服务部打算为拟议中的Big Rock 2群集太阳能和存储项目准备环境影响报告(EIR),如下所述。帝国县计划与发展服务部将于2024年9月26日下午6:00举行拟议EIR的公开范围范围会议。范围会议将在位于CA 92243 El Centro的Main Street 801的帝国县规划与发展服务部门举行。在本次会议上将接受有关EIR范围的评论。主题:环境影响报告(EIR),Big Rock 2群集太阳能和存储项目(一般计划修订24- 0002,区域更改24-0003,条件使用允许24-0006到达-0009,以及24-0002 THRU-0005和供水协议(WSA)。主管委员会的考虑:待定。项目地点:该项目地点位于加利福尼亚州帝国县的大约1,849英亩的私人空置土地上。该项目地点位于8号州际公路以南的非法人帝国县,位于加利福尼亚州塞利市约1英里处,在美国与墨西哥国际边界以北约六英里处。项目地点位于德鲁路(Drew Road),曼达帕路(Mandapa Road)的东部和北部。项目描述:该项目将包括光伏(PV)太阳能产生和电池能量存储系统(BESS)设施的构建和操作,该设施由多达500兆瓦的交替电流(MWAC)PV太阳能和高达500 MWAC BESS组成。提出了两个Gen-Tie线替代方案。该项目产生的功率将使用多达66 kV的收集器线收集,该系列可能会运行开销和/或地下到专用的项目变电站,并具有230 kV的开销传输线路或将项目变电站连接到帝国灌溉区(IID)Liebert Switchyard的“ Gen-Tie”线路。然后,Liebert Switchyard将通过230 kv Gen-tie系列的间接头顶连接到圣地亚哥天然气和电动机(SDG&E)帝国谷的变电站。项目的实施需要以下内容:
欧洲能源转型计划设立了明确的目标,即在绿色协议能源政策框架下到 2050 年实现气候中和的欧洲 [1]。欧盟委员会于 2021 年通过的“Fit for 55 0”一揽子计划为欧盟 2030 年气候和能源框架引入了更为严格的立法措施,包括可再生能源、能源效率、努力分担和排放标准立法、土地使用和林业以及能源税指令 [2]。现有的欧盟立法框架已被用于实施绿色协议愿景,明确表明未来能源结构中可再生能源 (RES) 的比重将增加,以及排放交易体系 (ETS) 对所有能源部门实施更严格的脱碳机制。太阳能和风能的不断普及极大地激励了电网的脱碳。然而,向欧盟碳中和能源系统有效利用低碳和可再生能源需要扩展到热力和运输领域,同时促进供应安全。通过结合节能和用电子燃料(基于电力生产氢气、合成气体和液体)取代化石燃料,可以将可再生能源发电系统的规模扩大 2 到 2.5 倍 [3],从而实现最终能源需求领域的气候中和。通过提高电气化程度实现的能源转型不仅对能源系统提出了巨大的挑战,包括太阳能和风能发电场的巨大容量和投资,而且对供应安全以及技术、经济和监管层面所需的额外措施也提出了挑战。目前,德国 [4]、美国 [5] 和中国 [6] 的可再生能源渗透率较低,已经报道了可再生能源的削减,导致可再生能源浪费和市场电价为负。电力供需时间间隔方程既需要运行单元的灵活性和同步性,也需要额外的能源储存措施、部门耦合和电网基础设施升级,以及高效的多国综合系统和市场,以经济高效地平衡可变可再生能源发电[7]。2050 年欧盟碳中和系统的能源建模研究解决了多功能能源储存技术的需求,以避免在可再生能源可用性高时通过负荷转移和灵活性进行削减,以及避免在可再生能源可用性低时进行负荷削减[3,8]。特别是,由于储存需求与总发电量的非线性增长有关,氢气和合成燃料形式的季节性能源储存被认为非常重要,因为报告称,电子燃料在最终能源中的份额为 20%。
#顾问摘要本评论文章探讨了区块链技术在革新巴基斯坦农业供应链中的潜力。鉴于越来越多的证据,这是一种新的新兴联系,在全球农业发展方面具有巨大的范围。巴基斯坦的案件特别有趣,因为其农业部门是该国经济的骨干,农业有重大促进经济增长。但是,部门和供应链挑战允许采用技术作为一种变革性解决方案。在此背景下,本文回顾了区块链技术如何及其分散的建筑和共识算法如何尤其解决农业供应链中的关键问题。本文强调了全球和本地环境,强调区块链技术是确保数据共享的安全性,记录保存的永久性以及供应链中端到端透明度的安全性。研究来自印度,越南,马来西亚,尼日利亚在内的发展中国家的应用,并关注为巴基斯坦提供的具体证据和学习,提供了越野分析,有助于对这项新兴技术及其应用的理解。本文中确定的全球证据有助于巴基斯坦的关键知识发展,强调了提高数据管理,透明度和降低对中介机构的潜力。这种影响超出了经济指标,并在整个社会动态中引起共鸣,这也可以通过农业粮食供应链来明显。本文以对巴基斯坦的未来派前景结束,提出了基于区块链的框架对农业供应链的有效性,并强调了政府的作用,该框架使优化农业过程并促进范围内的转型。引言农业是巴基斯坦的核心,证据是对国家经济实力的重大贡献,它构成了总GDP的约19%,并为劳动力的近42%提供了就业机会(Sajid&Ur Rahman,2021年)。因此,在巴基斯坦背景下,农业的重要性是由于该行业的广泛资源利用及其随后对国家经济方面的实质性影响所致。农业供应连锁店从端到端都超越了提供市场访问权限并连接基本利益相关者,例如农业综合企业,政府和农民。尽管广泛依赖大型农业部门,这也转化为推动经济增长,但该行业面临着从后勤效率低下到对供应链中更大的可食用性和透明度的必要需求(Khan等,2022年)的挑战。巴基斯坦的农业景观中的一个重大挑战也是现有实践的缓慢行动,这是对各种因素的贡献。是技术创新的缓慢步伐和进步农业技术的有限采用(Naseer等,2019)。
反思 在纪念 Melting Point Solutions 成立十周年之际,我们满怀感激。我们的团队非常感激能够与如此多的另类投资基金利益所有者和管理者合作,为他们及其客户提供二级市场流动性解决方案。Melting Point 的创始使命是为各种规模和类型的非流动性资产持有者提供高效、价格最大化的二级市场解决方案。通过持续改进、与客户完全一致的无冲突业务模式和卓越的文化,自成立以来,我们已为超过 80 亿美元的交易提供咨询。虽然我们 2023 年的平均交易规模几乎是 2014 年的 7 倍,但我们不会偏离为客户实现最佳结果的目标,无论客户规模或类型如何。单一家族办公室、多家族办公室、独立财富管理人、连锁机构、O-CIO、基金会、捐赠基金、养老金计划(公共和私人)、基金中的基金、共同基金、二级基金——都在过去十年中使用过我们的服务,其中许多是重复或连续使用。此外,我们还与以下客户建立了合作伙伴关系,为客户提供服务:1) Addepar,一家面向财富和资产管理者的顶级综合数据聚合和报告平台;2) 一家大型全球财富管理公司;3) 一家大型全球 O-CIO;4) 一家领先的固定收益养老金计划风险降低咨询服务提供商。正如我们所定义的那样,Melting Point 的“最佳点”是中低端市场。我们的投资组合交易规模通常在 2500 万美元至 2.5 亿美元的资产净值之间,但我们没有最低规模限制,交易规模从 50 万美元以下到 10 亿美元以上不等。无论交易规模如何,我们都采用同样严格的流程。 Melting Point 涵盖所有另类资产类别——私募股权、私募信贷、风险投资、房地产、基础设施、能源、非流动性对冲基金、诉讼融资等——并精心挑选了多元化、多维度的合格机构购买者群体(定义见美国证券交易委员会 1933 年证券法 D 条例第 501 条),按买家类型和资产类别、规模、年份和地理重点进行分层。这种分层使得我们能够为每个销售流程构建一个强大且具有竞争力的拍卖框架,从而确保每个基金权益都有一个基于市场的价格。与大多数同行不同,我们专注于单一领域——为 LP 提供二级市场流动性解决方案——不受参与一级融资或其他业务线可能带来的利益冲突的影响。在 Melting Point,LP 二级市场销售不是 GP 重组业务的“亏本销售”,也不是为了讨好一级融资业务的投资者;LP 二级市场是我们唯一的业务,我们的客户永远只是卖家。
北卡罗来纳州盐沼行动计划 (NC SMAP) 详细说明了一项为期五年的战略,旨在保护、恢复北卡罗来纳州沿海盐沼并允许其迁移,以最大限度地减少其现有生态、经济和文化功能的丧失和退化。这些盐沼经常和不定期地被月潮和风潮淹没,在本计划中,它们被定义为所有河口湿地(盐度≥千分之 0.5)。北卡罗来纳州拥有美国最大、最富饶的河口系统之一。其近 230 万英亩的多样化沿海栖息地支持着渔业和野生动物,保护并为沿海社区提供社会经济效益,促进军事准备,并培养文化和精神价值观和传统。盐沼提供广泛的生态系统服务,包括必要的鱼类栖息地、水质改善、邻近社区的防洪以及通过碳封存缓解气候影响。北卡罗来纳州海岸约有 220,000 英亩盐沼,是该国现存最大的盐沼之一的重要组成部分。从北卡罗来纳州到佛罗里达州北部大西洋海岸的南大西洋沿岸约有 100 万英亩盐沼,该计划与整个地区的保护和恢复这一广阔沼泽生态系统的努力相协调。当前和未来的盐沼面临着许多持续和新出现的威胁,包括因不相容的土地和水域使用而导致的退化、船尾流,以及气候变化导致的更强烈、更潮湿的风暴和海平面上升 (SLR)。必须有效应对这些威胁和影响,以保留和恢复已经受到影响的生态系统服务,并避免预计的未来损失,这些损失可能会从根本上降低和危及渔业和水质,以及沿海社区的恢复力、经济和文化遗产。盐沼面临的威胁需要采取紧急和有效的行动。为了满足这一需求,南大西洋盐沼倡议 (SASMI) 于 2021 年在皮尤慈善信托基金会 (Pew) 和东南地区规划与可持续发展伙伴关系 (SERPPAS) 的领导和指导下成立。作为一项区域性倡议,SASMI 汇集了 350 多个不同的合作伙伴,包括来自联邦、州和地方机构的领导人以及来自学术界、非政府组织 (NGO) 和社区的利益相关者。为了保护和改善北卡罗来纳州和佛罗里达州北大西洋海岸之间现有的数百万英亩盐沼,SASMI 于 2023 年 5 月发布了《沼泽前进:南大西洋海岸百万英亩盐沼生态系统未来区域计划》(SASMI 计划)。NC SMAP 与区域 SASMI 计划保持一致,汇集了来自学术界、政府机构、社区和非政府组织优先采取行动并充分利用北卡罗来纳州的现有资源。它旨在进一步推动保护沿海环境的其他努力,并纳入增加北卡罗来纳州沿海栖息地和社区碳封存和恢复力的战略和建议。NC SMAP 是众多当地专家和利益相关者的协作努力和宝贵见解的结果。北卡罗来纳州沿海联盟在 2022 年和 2023 年夏季举办了三场研讨会,对于确定计划的基本要素和完善建议的行动至关重要。NC SMAP 利用空间分析和多样化利益相关者的专业知识,为所有利益相关者和实体确定切实行动,这些利益相关者和实体致力于在气候变化的情况下到 2050 年维持或改善盐沼。Warnell 等人生成的预测。 2020 年的一项研究利用海拔和海平面上升数据,估计在中等海平面上升情景下,到 2050 年,北卡罗来纳州的盐沼净增加约 18 万英亩,前提是没有重大的发展或地质变化。然而,这些估计表明,沿海地区盐沼的增加和减少不会相等。南部海岸海拔较高,沿海开发较多,因此盐沼损失将比地势较低、开发程度较低的中部和北部海岸大得多。这种地理上的二分法决定了战略盐沼损失将比地势较低、欠发达的中部和北部海岸地区严重得多。这种地理上的二分法决定了战略盐沼损失将比地势较低、欠发达的中部和北部海岸地区严重得多。这种地理上的二分法决定了战略
电阻器。全新和未使用过的 Erie 和 Dubilier 电阻器。我们已获得另一批优质电阻器,现提供如下。1 瓦 8/6/100,2 瓦 12/6/100,1 瓦 9 型绝缘 15/-/100,1 瓦标准型 15/-/100,2 瓦 20/-/100,5 瓦 25/-/100。所有值均在 100 欧姆和 6.8 兆欧姆之间。或取 100 个样品,如下所示:20 瓦、25 瓦、20 1 瓦绝缘、20 1 瓦标准、10 2 瓦、5 5 瓦,至少有 30 个不同值,价格为 14/-。线绕。5 瓦。以欧姆为单位的数值。15、20、25、50、75、100、150、175、200、250、500、750、1000,所有线端均为每打 6/- 元。各种规格。美国 GROVES、UEI。玻璃。25 欧姆 5 瓦、175 欧姆、200 欧姆和 3k、7 瓦、175 欧姆 10 瓦、2k 20 瓦、5k、8k、10k、15k、25 瓦特,每个均为 1/6。Groves。I lkin。玻璃 25k 和 50k 80 瓦,每个为 3/- 元。 RCA 8k 和 16k 120 瓦,每只 3 /-。美国旋入式元件,用于 4336 Tx 5/6。示波器。由著名的英国制造商制造。黑色裂纹钢外壳,尺寸 12 x 8 x 箱。用于交流电源 230/200v 50cy。电子管尺寸 3 英寸(绿色)。硬电子管时基连续可变,从 5 到 250,000 cds 推挽式“x”偏转电路,TB 波形引出到单独的端子,用于摆动器工作或同步。提供回扫抑制。推挽式“Y”偏转电路,电平从 15 到 300,000 cos 所有常用控制和使用直流电压表测量交流波形幅度的装置。单独的同步放大器,无控制交互。配有所有测试导线和说明手册。它们是全新的,装在原装纸箱中。并且代表着 19/10/0 英镑的不可重复的便宜货。Carr。已付。电子键控器。230v 50cy。交流电源。我们自己生产。灰色裂纹钢外壳 9 x 7 x 6 英寸。适用于所有 5 个阀门。控制点、划和间距,速度控制连续可变,从每分钟 10 个以下到每分钟 60 个,字符完美形成。这是精密的一流操作,操作简单。Carr。已付 612/10/0。晶体。1000 kc Valpey、Bliley 或 Somerset,标准针距,20/-。RCA 100 kc 子标准,20/-。Western Elec。500 kc Ft 243 支架,英寸针距,7/6。全系列 Western IF 自由波段。450、465 Kc 等,每种 12/6。业余和商业波段。G3 Si Xtals 经过精密研磨,并经过酸蚀以达到最终频率。有 Ft 243 支架、¡in. 英国、;in. 美国或 ;in. P.5 支架可供选择。您可以自行选择 2 Mc 到 10 Mc 的频率。我们将以每台 15/- 的价格将所选频率的 1 Kc 以内发货,并准确校准频率。明确标记。小数点 frgs 会收取少量额外费用。我们还承担校准或重新磨平您自己的晶体,收费非常合理且象征性。本月特价。7290 Kc ñin. IOx 型标准英国支架、GEC、标准等。每个 7/6。CONNOISSIEUR 轻型拾音器。Connoissieur 标准轻型拾音器,配有输入变压器,全新且已装箱。定价 E4/10/5 含税。结算价为每个 £1/6/10。可批量出口。美国信号兵团。轻型速度键。1.38 带曲臂。3/9。同上,带短路杆 5/-。美国信号 J5a 防火 3/-。英国皇家空军 Mk2 Nr2 2/-。ATKINS 465 Kc IF 变压器。粉尘铁芯调谐每个 4/6,同上 Wearite 552 型,每个 465 Kc 6/-。Weymouth P2 微型 IF,每个 465 Kc 4/ -。Wearite 线圈 P 型。以下产品现在仅以每件 2/- PA、4、5、6 和 7 的价格提供。PHF4、5、6 和 7。- F04、5 和 6。AF、RF、BFO。Weymouth 线圈。以下产品每件 2/6,DAI、DA3、DA6、KAI、KH I、KOI、DH6、DOI、DO3、DO6、HOI、HO4、KO2、KA2、HA4、MSC3、QI IF 滤波器、CS3 W3 每 het 三波,每对带电路 4/-。Weymouth 和 Wearite 线圈组也可用,详情请咨询。
应汤加政府的要求,气候技术中心和网络与能源部密切合作,制定了汤加能源效率总体规划 (TEEMP),供汤加相关实体调整和采用。该计划基于对现有框架、计划、方案和项目的研究;广泛的利益相关者协商;以及数据开发和分析。TEEMP 涵盖电力使用和地面运输。TEEMP 是对 2009 年汤加能源路线图 2010-2020 (TERM) 方法的补充。TERM 致力于通过提高能源效率和改善供应链来降低汤加对化石燃料的依赖,以减少进口产品的价格波动,从而减少温室气体 (GHG) 排放并提高国家能源安全。汤加温室气体排放的基线评估基于汤加的国家自主贡献 (INDC),其中确定的主要排放部门为交通运输 (40%)、发电 (23%)、农业 (21%)、废物 (11%) 和其他能源 (5%)。TEEMP 处理了这些温室气体总量的 55%:发电 (23%) 和地面交通 (32%)。桑基分析确定了建筑用电和交通运输按燃料类型划分的能源流。大约一半的柴油消耗用于交通运输,另一半用于建筑用电发电(主要是住宅和商业部门的空间冷却、照明和电器)。其余的交通燃料是汽油。截至 2017 年,汤加最大岛屿汤加塔布岛的总装机容量为 17.8 兆瓦 (MW),其中 14 MW 为常规柴油发电机组容量,2.3 MW 为光伏发电,0.5 MW 为风能发电,以及 1 MW 的电池储能系统。这一装机容量较 2012 年有所增加,当时汤加塔布岛的常规容量为 12.6 MW,可再生能源容量为 1.3 MW。装机容量的增长归因于政府领导部署更多的可再生能源发电,以及电力负荷的增加,主要由于电器拥有量的增加。汤加电力有限公司 (TPL) 是一家垂直整合的公用事业公司,拥有并运营着汤加大部分电表前发电以及输配电 (T&D) 资产。电价对激励或抑制能源效率投资具有重要影响。尽管发电成本存在差异,但四个主要岛屿的 TPL 电价是统一的,截至 2018 年 2 月,电价定为每千瓦时 (kWh) 0.8514 汤加潘加 (TOP)。此外,每月前 100 千瓦时的用电量还有一项补贴“生命线电价”,即 0.7 TOP,适用于所有客户。鉴于汤加大部分电力来自柴油,电价对燃料成本的波动很敏感。汤加估计的能源强度为每美元 (USD) 人均 GDP 进口燃料 216.8 千兆焦耳 (GJ),在一切如常 (BAU) 情景下到 2030 年将上升到 259.8 GJ。2017 年,住宅部门占电力消费的 44%,商业、宗教、政府和公共服务部门占剩余的 56%。TERM 表明,与 2010 年的水平相比,到 2020 年能源消费预计增长 28%。估计的交通基线是 2016 年汤加的住宅、商业和政府用途超过 16,000 辆车辆。大多数车辆是汽车(6,031 辆)或轻型卡车/厢式货车/SUV(7,103 辆)。重型车辆、出租车和租车、摩托车和公共汽车占剩余的 3,690 辆。 2016 年,每人目前的平均车辆行驶里程估计为 2,289 公里,预计到 2050 年将增长到 5,103 公里,与预期的 GDP 增长保持一致。确定的交通运输关键政策选项包括旨在提高燃油经济性的车辆进口关税或登记费;限制重型车辆 (HDV) 的怠速时间;10% 的生物柴油混合物;部署电动汽车;以及通过方便行人、骑自行车者、拼车者和公共汽车乘客来减少车辆行驶里程的政策。交通运输部门的这些能源使用减少将导致温室气体到 2030 年比正常水平减少 28%,比 2018 年基线增加 1%。在建筑领域,汤加的电力消耗受建筑设计、电器使用和能源消耗行为的影响。鉴于汤加的热带气候,商业、政府和非政府建筑中通过使用空调进行降温的情况非常普遍,而且这种现象还在增加。可能有机会重新采用历史建筑的设计实践,例如被动通风和大型悬垂结构以提供遮阳。建筑领域的主要能源使用减少方案围绕增加可再生能源的部署、减少实施最低能源性能标准 (MEP)、改进出租车和租车、摩托车和公共汽车占剩余的 3,690 辆车。目前,2016 年人均车辆行驶里程估计为 2,289 公里,预计到 2050 年将增长到 5,103 公里,与预期的 GDP 增长同步。确定的交通运输关键政策选项包括旨在提高燃油经济性的车辆进口关税或登记费;限制重型车辆 (HDV) 的怠速时间;10% 的生物柴油混合物;部署电动汽车;以及通过方便行人、骑自行车者、拼车者和公共汽车乘客来减少车辆行驶里程的政策。交通运输部门的这些能源使用减少将导致温室气体到 2030 年比正常水平减少 28%,比 2018 年基线增加 1%。在建筑领域,汤加的电力消耗受建筑设计、电器使用和能源消耗行为驱动。鉴于汤加的热带气候,商业、政府和非政府建筑使用空调降温的做法十分普遍,而且使用量还在不断增加。可能有机会重新采用历史建筑的设计实践,例如被动通风和大型悬垂结构以提供遮阳。建筑领域的主要能源使用减少方案集中在增加可再生能源的部署、减少实施最低能源性能标准 (MEP) 以及改进出租车和租车、摩托车和公共汽车占剩余的 3,690 辆车。目前,2016 年人均车辆行驶里程估计为 2,289 公里,预计到 2050 年将增长到 5,103 公里,与预期的 GDP 增长同步。确定的交通运输关键政策选项包括旨在提高燃油经济性的车辆进口关税或登记费;限制重型车辆 (HDV) 的怠速时间;10% 的生物柴油混合物;部署电动汽车;以及通过方便行人、骑自行车者、拼车者和公共汽车乘客来减少车辆行驶里程的政策。交通运输部门的这些能源使用减少将导致温室气体到 2030 年比正常水平减少 28%,比 2018 年基线增加 1%。在建筑领域,汤加的电力消耗受建筑设计、电器使用和能源消耗行为驱动。鉴于汤加的热带气候,商业、政府和非政府建筑使用空调降温的做法十分普遍,而且使用量还在不断增加。可能有机会重新采用历史建筑的设计实践,例如被动通风和大型悬垂结构以提供遮阳。建筑领域的主要能源使用减少方案集中在增加可再生能源的部署、减少实施最低能源性能标准 (MEP) 以及改进实施最低能源性能标准 (MEP) 的减排措施、改进实施最低能源性能标准 (MEP) 的减排措施、改进