摘要 - 单相微电网(MG)和载荷与三相MG的连接产生了电源质量问题,例如MGS的常见耦合(PCC)的不平衡电压和电压上升。在本文中,提出了储能系统(ESS)中修改的反向下垂控制(MRDC)方案,以改善多微晶(MMG)中的三相PCC电压质量。MRDC由反应性电源补偿器(RPC)和电压补偿器组成。控制器通过使用ESS产生的反应能力来调节MMG的反应能力和电压不平衡。使用OPAL-RT OP5600实时模拟器在实时仿真中验证了该提出的方案的有效性。PCC处的电压不平衡因子(VUF)从3.6%降至0.25%,而在单相载荷下,反应能力显着降低。索引项 - 不平衡的电压补偿,反应性电源补偿,反向下垂控制,分布式发电,PV岛,储能系统,电压控制的逆变器,多微粒网,功率质量。
如何使用本指南《联合委员会的调查活动指南》可在您组织的外部网站上找到。本指南包含:•信息以帮助您准备调查的信息•每个调查活动的摘要,包括后勤需求,会话目标,会议概述以及建议的参与者•按照他们进行的一般顺序列出了会话。模板议程和现场访问期间发生的调查活动列表被发布到您组织的联合委员会连接Extranet网站,以接近您的申请并审查申请。当可用模板议程和调查活动清单时,请下载并查看活动,并考虑您可能想参与的人。活动列表包括一列,您可以在其中记录每个会话旁边的参与者名称或位置。为每个会话(包括背部)确定关键参与者(及其电话号码)很重要。考虑在计划文件中包括可能的会议地点和测量师的工作空间。参考本调查活动指南中的会议,并详细了解活动期间会发生什么。模板议程和活动列表包括每个活动的建议持续时间和调度指南。在调查的第一天,您将有机会与测量师合作,为您的日常运营做准备议程。请认识到本调查活动指南是为大型和大型组织创建的。一些组织将有一个测量师,而另一些组织将有多个测量师。如果您对将到达您网站的测量师人数有任何疑问,请联系您的客户经理。如果您不确定会计经理的姓名或电话号码,请致电630-792-3007与联合委员会的总委员会运营商联系以寻求帮助。
与大型语言模型(LLM)相关的碳足迹是一个非常关注的问题,包括其培训,推理,实验和存储过程中的排放,包括运营和体现的碳排放。一个重要方面是准确地估算出新兴LLM的碳影响,甚至在训练之前,这在很大程度上依赖于GPU使用。现有研究报告了LLM培训的碳足迹,但只有一种工具MLCO2可以预测进行体育锻炼之前新神经网络的碳足迹。但是,MLCO2有几个严重的局限性。它不能将其估计扩展到浓密或混合物(MOE)LLMS,无视关键的体系结构参数,仅关注GPU,并且无法建模固定的碳足迹。解决这些差距,我们引入了llmcarbon,这是一种端到端的碳足迹投影模型,均为密集和Moe LLMS设计。与MLCO2相比,LLMCarbon显着提高了各种LLM的碳足迹估计的准确性。源代码在https://github.com/sotarokaneda/mlcarbon上发布。
摘要 - 在本文中,我们通过分析使用网格连接转换器的瞬态稳定性,该转换器具有网格形成的com-prec-per-per-proop Control,也称为可调节的虚拟振荡器控制。从理论上讲,我们证明复杂的下垂控制是一种最先进的网格形成控制,始终具有稳定的状态平衡,而经典的下垂控制则没有。我们在网格干扰下为复杂的下垂控制瞬态稳定性(全球渐近稳定性)提供了定量条件,这超出了经典下垂控制的局部局部(非全球)稳定性。对于复杂下垂控制的瞬时不稳定性,我们揭示了不稳定的轨迹是有界的,表现为极限循环振荡。此外,我们将稳定性从二阶网格形成控制动力学扩展到全阶系统动力学,这些动力学还涵盖电路电磁瞬变和内环动力学。我们的理论结果有助于深入了解复杂下垂控制的瞬态稳定性和稳定性,并为参数调整和稳定性保证提供了实用的指南。
摘要 - Spike Corting是从细胞外记录中解码大规模神经活动的关键过程。神经探针的进步有助于记录大量神经元,并增加了通道计数的增加,从而导致较高的数据量并挑战了当前的On-Chip Spike Sorters。本文介绍了L-Sort,这是一种新颖的芯片尖峰分类解决方案,其中中位数尖峰检测和基于本地化的聚类。通过组合中位数近似值和提出的增量中值计算方案,我们的检测模块可实现记忆消耗的减少。此外,基于定位的聚类利用几何特征而不是形态特征,从而消除了在特征提取过程中包含尖峰波形的内存耗费缓冲区。使用Neuropixels数据集进行评估表明,L-SORT可以通过减少硬件资源消耗来实现竞争性排序精度。对FPGA和ASIC(180 nm技术)的实现,与最先进的设计相比,面积和功率效率显着提高,同时保持了可比的精度。,如果与使用相同数据集评估的最新设计相比,我们的设计将大约×10面积和功率效率达到相似的精度。因此,L-SORT是可植入设备中实时高通道计数神经处理的有前途的解决方案。
摘要:本文详细介绍了符合半F47-0706标准的Ultimod和XGEN电源范围。简介一般而言,由于设备和过程控制的敏感性,工厂自动化设备需要非常高的电源质量。尤其是半导体处理设备可能容易受到输入线上的电压下垂。半F47-0706标准定义了半导体处理,计量和自动化测试设备的最低电压SAG免疫要求。作为本设备的组件,需要电源来满足这些最小电压SAG要求。什么是电压下垂?电压下垂(或倾斜)定义为RMS电压的降低或电流低于标称的90%的标称持续时间,直到一分钟为一分钟,但不完全中断。电压下垂可能有许多原因,例如恶劣的天气条件,公用事业设备操作或故障以及相邻的客户。我们中的许多人都会看到电压下垂的影响(例如,白炽灯的瞬间变暗),但是在生产环境中,输入电压下垂可能导致生产关闭,从而导致巨大的收入损失。为了解决此问题,1999年,半导体设备和材料研究所(SEMI)建立了与AC线SAG免疫有关的标准。
摘要:为了应对可再生能源渗透的技术挑战,本文重点研究了在负载和发电意外事件发生后,混合可再生能源综合电力系统中电网电压和频率响应的改善。提出了一种综合方法,利用电池储能系统 (BESS) 通过下垂型控制来调节电压,通过同化惯性模拟 (IE) 和下垂型控制来调节频率。此外,提出了一种新颖的频率相关充电状态 (SOC) 恢复 (FDSR),以在 FDSR 约束内调节 BESS 功耗,并在需要时在空闲期间为电池充电。所提出的 BESS 控制器的有效性在 IEEE-9 总线系统中得到证明,该系统具有 22.5% 的光伏 (PV) 和风能渗透水平。获得的仿真结果表明,所提出的控制器在调节电压和频率的同时性能令人满意,频率变化率较低,频率最低点更好。此外,与传统方法相比,所提出的 FDSR 在 SOC 恢复时表现出优势。
由于绝大多数 DER 未连接到公用设施通信网络,并且需要非常快的响应时间,因此本报告考虑了不需要通信的自主逆变器控制功能。通过预先编程 DER 逆变器以自主响应本地条件,大量配电连接逆变器可以支持电网频率,而无需通信网络或标准化通信协议。此类功能的先决条件是逆变器设计为在频率扰动期间(或“穿越”)保持与电网的连接。最常见的基于逆变器的频率支持功能是频率-瓦特控制,也称为频率下垂控制。该功能本身类似于同步发电机的调速器下垂控制,因为逆变器测量其端子处的交流电网频率,并通过按照旨在帮助将频率移回正常范围的下垂曲线调节其功率来做出响应。5 这种频率-瓦特下垂功能也称为主频率响应 (PFR),是所有互连电网中使用的基本稳定功能,对于确保稳定的大容量电力系统运行至关重要。
叶片形态是水稻育种中最重要的农艺性状之一,因为它对作物产量有贡献。脱落的叶子(DR)突变体是由甲基磺酸乙酯(EMS)诱变从iLpum水稻品种开发的。与野生型相比,DR植物表现出下垂的叶子,伴随着一个小的Midrib,短圆锥体和植物高度降低。DR植物的表型是由编码GDSL酯酶的单个回收基因中的突变(LOC_OS02G15230)引起的。对野生型和DR序列的分析表明,DR等位基因将单个核苷酸取代(甘氨酸)携带为天冬氨酸。RNAi与DR突变产生了相同的表型,确认LOC_OS02G15230与DR基因相同。Sio 2的显微镜观测和植物营养分析表明,DR叶片中的二氧化硅比野生型叶片不那么丰富。这项研究表明,DR基因与二氧化硅沉积的调节有关,二氧化硅过程的破坏导致叶片表型下垂。