摘要 - 我们探讨了如何启用机器人技术下文预测模型的文化学习能力,从而使模型可以通过使用人类的Teleop演示示例提示无需微调来执行新任务。我们提出了一种因果变压器(ICRT),该因果变压器对感觉运动轨迹进行自回旋预测,其中包括图像,本体感受态和动作。这种方法允许在测试时间灵活且无训练的新任务执行,这是通过提示模型的新任务轨迹来实现的。使用Franka Emika机器人进行的实验表明,即使在与提示和培训数据不同的环境配置中,ICRT也可以适应提示指定的新任务。在多任务环境设置中,ICRT在概括方面明显胜过当前最新的机器人基础模型,以看不见任务。代码,检查点和数据可在https://icrt.dev上找到。
viçosa,巴西抽象 - 在质量标准范围内不断能源供应,并且不断地是能源部门的主要目标,在这种情况下,储存系统被突出显示,电池存储系统(BESS)以其适用性和商业成熟度而脱颖而出。 因此,在分析BES的应用中,当它可以访问电网以及服务隔离系统时。 在能量过渡的背景下,对其组件,主要应用,大小和操作模拟形式的调查以及符合隔离系统的调查。 的瞄准,从而建立了该设备在巴西电力部门中的渗透力的理论基础。抽象 - 在质量标准范围内不断能源供应,并且不断地是能源部门的主要目标,在这种情况下,储存系统被突出显示,电池存储系统(BESS)以其适用性和商业成熟度而脱颖而出。因此,在分析BES的应用中,当它可以访问电网以及服务隔离系统时。在能量过渡的背景下,对其组件,主要应用,大小和操作模拟形式的调查以及符合隔离系统的调查。的瞄准,从而建立了该设备在巴西电力部门中的渗透力的理论基础。
允许将本工作的全部或一部分用于个人或课堂使用的数字或硬副本允许,而没有费用,只要副本不是用于Proft或Commercial Advantage的副本,并且副本均带有此通知和FRST页面上的完整引用。必须尊重他人所拥有的这项作品的组成部分的版权。允许用信用摘要。否则复制或重新发布以在服务器上发布或重新分配到列表,需要事先指定许可和/或费用。请求权限从permissions@acm.org。CHI '24,5月11日至16日,2024年,美国HI,HI,HI©2024由所有者/作者持有的版权。 出版权许可获得ACM的权利。 图像已深入地融入我们的生活中。 是否ACM ISBN 979-8-4007-0330-0/24/05 https://doi.org/10.1145/3613904.3642129通过绘画,摄影或数字技术,创建CHI '24,5月11日至16日,2024年,美国HI,HI,HI©2024由所有者/作者持有的版权。出版权许可获得ACM的权利。图像已深入地融入我们的生活中。是否ACM ISBN 979-8-4007-0330-0/24/05 https://doi.org/10.1145/3613904.3642129通过绘画,摄影或数字技术,创建
报告要求:如果操作员的任何 Ref /E/ 压力开关未通过功能测试(开关在 9,000 英尺至 11,000 英尺的高度未激活),波音公司将要求提供以下更多信息以帮助支持根本原因调查:- 压力开关序列号 - 飞机尾号 - 开关拆除日期 - 拆除原因 - 用于识别故障的测试程序(任务卡或 AMM)- 压力开关的安装日期(如果有)- 自新(TSN)FH/FC 以来的时间(如果有)- 自安装(TSI)FH/FC 以来的时间(如果有)- 自上次飞行以来的时间- 型号名称/使用的测试设备数量- 测试过程中的高度变化率(英尺/分钟)(故障高度/持续时间)- 测试位置- 是单个开关被拆除,还是两个开关都从同一架飞机上被拆除- 压力开关的启动点(如果有)
量子理论的预测重新呈现了广义的非秘密解释。除了这一事实的基本关系之外,量子理论在多大程度上违反了非智能限制的限制在通信和信息过程中可用的量子优势。在这项工作的第一个部分中,我们通过准备和测量实验正式定义上下文情景,以及包含量子上下文行为集的一般上下文行为的多人。这个框架使我们恢复了这些scenarios中的几种量子行为的属性,包括上下文性场景和相关的非上下文性不平等,这需要违反单个量子准备和误导程序,以使其成为混合状态和UNSHARP测量。有了适当的框架,我们制定了新型的半决赛编程松弛,以界定这些量子式行为。最重要的是,在上下文中,我们提出了一种新型的基于单一的单一统一性的放松技术。,我们通过在违反几种非上下文性不平等的量子上获得紧密的上限来证明这些放松的效果,并确定新颖的最大上下文量子策略。为了进一步说明这些放松的变化,我们演示了
可靠的tRNA签名分析:用于早期诊断非小细胞肺癌早期诊断的新型液体活检1:15 min seok han探索方法,用于piggybac transposase的定向进化1:30海顿·霍尔蒙德(Hayden Holmlund
摘要:铁路场景的理解对于各种应用程序至关重要,包括自主火车,数字缠绕和基础设施变更监控。但是,后者的开发受到现有算法缺乏注释的数据集和局限性的限制。为了应对这一挑战,我们提出了铁路3D,这是铁路环境中语义细分的第一个综合数据集,并进行了比较分析。Rail3D涵盖了来自匈牙利,法国和比利时的三种不同的铁路环境,捕获了各种各样的铁路资产和条件。有超过2.88亿个注释点,Rail3D超过了大小和多样性的现有数据集,从而可以训练可概括的机器学习模型。我们进行了一个通用的分类,该分类使用了九个通用类(地面,植被,铁路,电线,信号,围栏,安装和建筑物),并评估了三种最先进模型的性能:KPCONV(内核点卷积),LightGBM和随机森林。最佳性能模型,一种经过的kPCONV,在联合(MIOU)上达到了平均值为86%。基于LightGBM的方法获得了71%的MIOU,但表现优于随机森林。这项研究将通过为3D语义细分提供全面的数据集和基准,从而使基础设施专家和铁路研究人员受益。数据和代码可公开用于法国和匈牙利,并根据用户反馈进行连续更新。
摘要 - 测量机器人系统的总体自主分数需要组合系统的一组相关方面和特征,这些方面和特征可能以不同的单位,定性和/或不一致来测量。在本文中,我们建立在现有的非上下文自治框架的基础上,该框架衡量并结合了系统的自治级别和组件性能作为整体自主分数。我们检查了几种组合特征的方法,显示了某些方法如何找到相同数据的不同排名,并采用加权产品方法来解决此问题。此外,我们介绍了非上下文自主权坐标,并代表具有自主距离的系统的整体自主权。我们将我们的方法应用于一组七个无人机系统(UAS),并获得其绝对自主分数以及相对于最佳系统的相对得分。
摘要:量子化学是噪声中型量子 (NISQ) 设备的一个有前途的应用。然而,量子计算机迄今为止尚未成功解决具有真正科学意义的问题,算法的进步对于充分利用当今可用的普通 NISQ 机器来说是必不可少的。我们讨论了一种基于将分子汉密尔顿量划分为两部分的基态能量估计方法:一部分是非上下文的,可以用经典方法求解,另一部分是上下文分量,可通过变分量子特征求解器 (VQE) 程序获得量子校正。这种方法被称为上下文子空间 VQE (CS-VQE);然而,在将其部署到 NISQ 设备上之前,还有一些障碍需要克服。我们在这里解决的问题是 ansatz,即我们在 VQE 期间对其进行优化的参数化量子态;最初并不清楚汉密尔顿量的分裂应如何反映在 CS-VQE ansa ̈ tze 中。我们提出了一种“非上下文投影”方法,该方法由稳定器形式中 CS-VQE 的重新表述所阐明。这定义了从完整电子结构问题到上下文子空间的假设限制,并促进了可在 NISQ 设备上部署的 CS-VQE 的实现。我们使用量子模拟器验证了非上下文投影假设,并展示了一组小分子的化学精确基态能量计算,同时显著减少了所需的量子比特数和电路深度。