苔原和北方生态系统涵盖了北部圆形冻土区域,并正在经历快速的环境变化,对全球碳(C)预算具有重要意义。我们分析了多年时间序列,其中包含在70个永久冻土和非层状生态系统中的二氧化碳(CO 2)通量的302次估计,以及在181个生态系统中对夏季CO 2通量的672次估计。,尽管夏季的吸收率相似,但我们发现在非冻土生态系统中的年度CO 2下沉量增加,但没有多年冻土生态系统。因此,最近的非生长季节CO 2损失显着影响了多年冻土生态系统的CO 2平衡。此外,对年际变异性的分析显示,在推定的氮限制地点和在夏季降水量不太依赖用水的地方,夏季更温暖会扩大C周期(提高生产率和呼吸)。我们的发现表明,水和养分的可用性将是这些生态系统对未来变暖的C周期反应的重要预测指标。
摘要。恢复排水和提取的泥炭地可能会将其返回到二氧化碳(CO 2)下沉量,从而充当显着的气候变化缓解。ever,恢复的站点是否会保留下沉或切换到气候变化的来源是未知的。因此,我们调整了CoupModel,以模拟生态系统CO 2频道以及恢复的沼泽的相关影响因子。研究地点是加拿大东部的泥炭地,被提取了8年,并在恢复前离开了20年。与净生态系统交换(NEE),表面能量,土壤温度前纤维和地下水位深度数据的涡流协方差测量的3年(代表14-16岁)相比,对模型输出进行了第一次评估。进行了灵敏度分析,以评估所含有的CO 2倍数对新生长苔藓的厚度的响应。然后使用经过验证的模型来评估对气候强迫变化的敏感性。coupmodel重现了测得的表面能池,并与观察到的土壤温度,地下水位深度和NEE数据显示出很高的一致性。当将新生长的苔藓和Acrotelm的厚度从0.2到0.4 m更改时,模拟的NEE略有不同,但对于1 m厚的厚度显示出明显较小的吸收。在3个评估年中,模拟的NEE为-95±19GCM-2 Yr-1和-101±64GCM-2 Yr-1,范围从-219到 + 54GCM-2 yr-1,具有扩展的28年Cli-Mate数据。经过14年的恢复,泥炭地的平均CO 2摄取速率与原始地点相似,但年际变化较大,并且在干燥的年份中,重新存储的泥炭地可以切换回临时CO 2源。该模型预测CO 2吸收的中等减少,但如果泥炭地在生态和水文上恢复,则在未来的气候变化条件下仍然是合理的下沉。
摘要:细菌反硝化是土壤N 2 O水槽的主要途径,这对于评估和控制N 2 O排放至关重要。生物基多羟基烷烃(PHA)微塑料颗粒(MPS)在常规环境中缓慢降解,持续惰性持续时间。然而,在降解之前,PHA微塑料老化对细菌n 2 O下沉量的影响仍然很少。在这里,土壤模型菌株denitrificans暴露于0.05-0.5%(w/w)的Virgin和老年PHA MPS。尽管没有观察到分子量的显着变化,但老化的PHA MPS阻碍了细胞的生长和n 2 O的降低率,导致N 2 O排放的激增。1 h NMR光谱和UPLC-QTOF-MS分析确定γ-丁洛洛洛酮是从老年PHA MPS释放的关键成分。在细胞水平上的代谢验证证实了其对N 2 O水槽和ATP合成的抑制作用。在周围自发质子化和水解的γ-丁龙酮将与ATPase的质子竞争,并破坏硝化电子转移和氧化磷酸化之间的耦合。因此,能量缺陷的细胞减少了降低n 2 o的电子供应,这并不有助于节能。这项工作揭示了一种新型机制,通过这种机制,PHA微塑性衰老会损害细菌N 2 O下沉,并突出了考虑生物基型微塑性衰老带来的环境风险的需求。关键字:多羟基烷酸盐,生物塑性衰老,细菌反硝化,n 2 o下水道,能量代谢,γ-丁酸苯二甲酸,denitrificans
摘要这项研究表征了海洋生物碳泵指标,在区域碳循环评估和过程的第二次迭代中(RECCAP2)项目。此处的分析重点介绍了颗粒有机碳(POC)生产中的全球和生物组尺度区域模式的比较,并从RecCap2海洋生物地球化学模型集合中与源自卫星遥感,沉积物陷阱和地球化学方法衍生的观测产物的观测产物从RECCAP2海洋生物地球化学模型集合中下沉。在平均大规模空间模式中通常存在良好的模型数据一致性,但在模型集合和观察产物中具有大量分布。全球综合的集合均值出口产生,被视为在100 m(6.08±1.17 pg c yr -1)下的下沉POC通量,并且出口比定义为下沉量除以净初级产量(0.154±0.026)(0.154±0.026),都在较低的估计估计量下降。与观察性约束的比较还表明,模型整体可能低估了高生产率区域中的区域生物学CO 2下水道和Air -Sea Co 2通量。在1,000 m(0.65±0.24 pg c yr -1)中发现了合理的模型数据一致性,用于全球融合的,合奏均值下沉的POC通量,并在1,000 m上通过100 m(0.122±0.041)(0.122±0.041)(0.122±0.041)分配为1,000 m的转移效率,并在两种情况下进行变化。RECCAP2分析提出了用于评估生物地球化学模型技能的标准海洋生物碳泵指标,对于进一步建模的努力至关重要,这些指标至关重要,以解决涉及海洋物理学与生物地球化学之间系统水平相互作用的剩余不确定性。
摘要这项研究表征了海洋生物碳泵指标,在区域碳循环评估和过程的第二次迭代中(RECCAP2)项目。此处的分析重点介绍了颗粒有机碳(POC)生产中的全球和生物组尺度区域模式的比较,并从RecCap2海洋生物地球化学模型集合中与源自卫星遥感,沉积物陷阱和地球化学方法衍生的观测产物的观测产物从RECCAP2海洋生物地球化学模型集合中下沉。在平均大规模空间模式中通常存在良好的模型数据一致性,但在模型集合和观察产物中具有大量分布。全球综合的集合均值出口产生,被视为在100 m(6.08±1.17 pg c yr -1)下的下沉POC通量,并且出口比定义为下沉量除以净初级产量(0.154±0.026)(0.154±0.026),都在较低的估计估计量下降。与观察性约束的比较还表明,模型整体可能低估了高生产率区域中的区域生物学CO 2下水道和Air -Sea Co 2通量。在1,000 m(0.65±0.24 pg c yr -1)中发现了合理的模型数据一致性,用于全球融合的,合奏均值下沉的POC通量,并在1,000 m上通过100 m(0.122±0.041)(0.122±0.041)(0.122±0.041)分配为1,000 m的转移效率,并在两种情况下进行变化。RECCAP2分析提出了用于评估生物地球化学模型技能的标准海洋生物碳泵指标,对于进一步建模的努力至关重要,这些指标至关重要,以解决涉及海洋物理学与生物地球化学之间系统水平相互作用的剩余不确定性。
新西兰奥克兰大学减少城市碳排放量的博士学位:减少Aotearoa化石燃料在Aotearoa的城市城市地区燃烧的城市碳排放量的社会经济影响分析的分析,占其GRASS植被的40%,同时占10%,同时占10%的居民,并占据了URBAN的0%;排放。然而,尽管城市规划显着影响排放源和水槽,但Aotearoa和全球范围内有关此抵消的数据是有限的。作为Aotearoa到2050年的净净排放量,尤其是后Cyclone Gabrielle,战略城市发展和土地管理可能会为这一目标做出重大贡献,并有可能每年在碳信用额中节省多达20亿美元。我们的合作努力将本地顶级研究人员,数据和排放专家,能源经济学家,气候传播专家以及计量经济学和通量建模方面的国际专家团结起来,以优化城市增长和发射的缓解。最近,我们团队的主要承包商GNS科学| TepῡAo获得了一项为期五年的项目,该项目致力于与中央和地方政府,工业和IWI合作。目的是制定和传播排放数据,增强其理解和评估整体和特定部门的排放能力,从而促进知情行动减轻它们。作为这项研究的分包商,奥克兰大学的团队(Selena Sheng博士和Le Wen博士)将领导对Aotearoa的每个城镇和城市的数据驱动估算的估计。潜在学生的重点领域:该计划将在太空中绘制Urban Co 2来源和下沉量(大约500m的区域),时间(小时)以及按部门,例如运输,住宅,工业和城市植被。这些地图将从尖端的大气观测和建模工具的结合来发展。该计划的结果将使Aotearoa成为世界上第一个拥有每个城市中心的现实排放数据的国家,以指导Aotearoa各种城市环境的未来发展。作为这项较大项目的一部分,社会经济学集团拥有一个充分资助的博士学位机会,可用于研究减少城市碳排放的社会经济分析,重点介绍了Aotearoa和政策途径的社会和经济驱动力的计量经济学建模。这个成功的申请人将在这个多学科团队中工作。