摘要 - Sirius和Polaris是代表康奈尔大学参加AUVSI Robosub 2024比赛的两辆自动驾驶汽车。在过去的一年中,Cuauv成员有无数小时的时间来构建我们的新2024 AUV Sirius。Sirius的上船体压力容器经过精心设计,以增加可及性并减少错误空间,并具有新的矩形轮廓。我们已经设计并集成了电池管理系统,以防止电流过度并最大程度地降低板损坏的风险。此外,我们的新基于伺服的致动系统承诺在完成任务时更可靠。这些进步的目的是建立一个可靠和精确的系统。今年的一个重要战略重点是在两辆车之间的机械和电气系统中都向后兼容。这支持我们整个系统的可靠性。
摘要 - 对于RoboSub 2024,AUV-IITB团队正在采取行动Mastya 6d,具有新的驱动系统,可靠的电气堆栈和全新的代码库。考虑到要采摘的物体的多功能性,设计了一种使用软机器人技术的抓手。鱼雷射击器变得更简单,更容易重新加载。现有的Subconn连接器被我们的内部连接器代替,以便在测试和提高速度时易于使用。使功能板变小,并合并了高度的冗余,以确保运行平稳。更改了摄像头,以提供更广阔的视野,更明亮的进料和高数据传输速率。最重要的是,整个软件体系结构都经过改进以使用Python而不是C ++,从而利用其广泛的图书馆支持和提高可读性。最后,在车辆上进行了广泛而严格的测试,以确保所有功能都经过了良好的测试和能力。
有关评论截止日期的信息:1。每个感兴趣的经济运营商有兴趣被授予合同,持续或可能由于合同权威的行为或决定而受到损失,该法案或决定在合同的签署签名之前,并据称该法案违反了该法律的任何权利,违反了该法律的任何权利,违反了该法律的审查权,请根据规定审查法律,根据规定的审查,根据规定的审查,根据规定的法律,该法律是根据规定的法律审查法律,该法律是根据规定的规定,该法律是规定的法律,该法律审查了法律的规定。 104(i)/2010)。2。要向招标审查授权提供诉讼,申请人必须支付不可退还的费用,该费用存入通用政府帐户。更多详细信息在招标审查局(www.tra.gov.cy)的网站上给出。关于申请申请的方式和程序,对这些申请的方式以及有关裁定的裁定的程序,《法律规定》涉及审查程序涉及2010年公共合同的审查程序(法律104(i)/2010年)。
自动驾驶汽车(AUV)是海洋学和军事目的的主要研究工具。这些车辆的建造资本更大,一旦部署在海洋中,它就失去了与陆地世界的所有连通性,并且很难预测AUV的工作状态和健康状况,这不仅会阻碍AUV的透明度,而且还会蚀至现实时代的数据提取能力。本文通过部署与AUV同步移动并在水下与AUV连接的自动型表面车辆(ASV)专门解决了此问题。因此,通过集成IOT Twin Maker Service(Amazon Web Services(AWS)提供的数字双技术服务)来可视化提取的健康和监视数据。此外,可以通过插入AWS提供的Edge Computing软件来实现本地处理数据并进行现场决策的能力。结果描述了AUV的数字双胞胎模型以及其实时健康状况。
在海上开发业务中,包括海上石油和天然气场的开发,建设和维护以及探索离岸矿产资源,远程操作的车辆(ROV)已被用来探索海床,建造,检查和维护海底结构。由于最近的石油价格下跌和对环境影响的兴趣增加,并且由于自动驾驶水下汽车(AUV)技术的进步,越来越多的预计,通过与AUVS和CO 2的ROV操作自动化一部分,可以通过降低可增强的操作效率的运营时间来提高运行效率。AUV与ROV不同,不需要具有高级技能的操作员,并且他们的移动不受电线的限制。此外,ROV需要具有高级动态定位功能的支撑船,但可以使用更简单的支撑船进行操作。我们于2013年开始对AUV的研究和开发
无人管理的水下车辆(UUV)是水下勘探和维护的关键。自动驾驶水下车辆(AUV),其潜力减少了运营时间和环境影响,这使人们增加了兴趣。但是,他们面临着重要的技术挑战,尤其是在电源方面。这项研究重点是用于连续AUV操作的电感无线功率传递(IWPT),采用紧密耦合的分裂核心变压器(SCT),设计用于近场功率传递。提出了稳健的隔离和对准机制来克服海水环境的影响。具有SCT和RESONANT LLC电路的IWPT设备进行模拟并实验测试。有限元方法研究突出了将设备与海水环境隔离,尤其是在高频时的优势。LLC仿真和实验结果表明,电力传输的效率分别为93.2%和87.1%,最高为312W。但是,实验设备的全球效率下降到76.4%,突显了对电路设计优化的需求。
摘要 - 为轻量级的水下车辆操纵器系统(UVM)开发自主干预措施在近年来引起了极大的关注,因为这些系统有机会降低干预运营成本。开发自主UVMS功能是具有挑战性的,因为缺乏可用的标准软件框架和管道。以前的作品为水下车辆提供了模拟环境和部署管道,但没有提供完整的UVMS软件框架。我们通过创建钓鱼者来解决此差距:用于开发本地化,控制和决策算法的软件框架,并支持模拟传输。我们通过实现最新的控制架构来验证此框架,并证明具有平均误差低于0.25 m的平均误差和Waypoint跟踪的能力,平均最终误差为0.398 m。
免责声明:该出版物是由加拿大国防部国防部的组织编写的。本出版物中包含的信息是通过最佳实践和遵守负责任的科学研究行为的最高标准得出和确定的。此信息旨在使用国防部,加拿大武装部队(“加拿大”)和公共安全伙伴,并且可以根据允许的方式与学术界,工业,加拿大盟友和公众共享(“第三方”)。第三方根据本出版物做出的任何依赖或决定的任何用途都应自行进行风险和责任。加拿大对由于出版物的任何使用或依赖而可能造成的任何损害或损失承担任何责任。
有几种针对AUV的推进技术。他们中的一些人使用刷子的无刷电动机,变速箱,唇部密封箱和可能被喷嘴包围的螺旋桨。所有这些嵌入在AUV结构中的部分都参与推进。其他车辆使用推进器单元来维持模块化。根据需求,推进器可能配备了用于螺旋桨碰撞保护的喷嘴或减少噪声提示的喷嘴,或者可能配备了直接驱动推进器,以使效率保持最高水平,噪音处于最低水平。高级AUV推进器具有冗余轴密封系统,以确保机器人的适当密封即使在任务期间其中一张密封件失败。
摘要。自动驾驶水下车辆(AUV)是一种在世界和印度尼西亚广泛发展的水下车辆。这个AUV以商业用途甚至军事目的而闻名。AUV配备了各种传感器和其他设备,以支持在水下观察的活动。这些传感器的使用可以用作水下观察中实际条件的参数。在这个最终项目中,将创建一个基于智能手机的应用程序,以监视AUV上的遥测数据并向车辆添加安全系统。用户可以执行监视过程以确定水下条件,并在网络上配备数据安全系统,以确保在交付过程中确保数据安全性。本应用程序的工作原理是,用户使用国际数据加密算法(IDEA)算法访问数据库服务器上已确保的数据,以进行数据解密过程。使用该算法是因为它是最好的,最新的块状算法,很少使用。遥测数据将在智能手机上处理,以便用户可以在水下看到或监视活动,并可用于实际分析。从实验结果中可以是平均处理时间为0.00065秒,可以得出结论,使用具有IDEA算法的安全系统的遥测数据监视系统可以与AUV上的安全和监视遥测数据一起使用。关键字:AUV,IDEA,KRIPTOGRAFI,加密。