系统连接续 图 8 显示了如何在单个 I2S 总线上连接两个 I2S 麦克风。R41–R44 用于抑制或终止各自的迹线。如果迹线在电气上很长,则它们应该是阻抗在 50-120 欧姆范围内的受控阻抗迹线。当迹线的长度(以英寸为单位)大于上升/下降时间(以 nS 为单位)的 2 倍时,该迹线被视为在电气上很长。即使迹线在电气上不长,R41-R44 也可以用作阻尼电阻(27-51 欧姆),通过减少由杂散电感和电容引起的过冲和振铃来改善信号完整性。无论哪种情况,R41-R44 都应尽可能靠近驱动迹线的设备(信号源)。如果电容器和麦克风之间的走线电感最小化,去耦电容器(C32-33 和 C34-35)最有效。这可以通过使用短而宽的走线来实现。如果在麦克风下方使用接地平面,则将电容器接地垫直接连接到带有过孔的平面,而无需使用任何走线。
Excelitas Technologies 的 C30902EH 系列雪崩光电二极管采用双扩散“穿透”结构制造而成。此结构在 400 nm 和 1000 nm 之间提供高响应度,并在所有波长下提供极快的上升和下降时间。器件的响应度与高达约 800 MHz 的调制频率无关。C30902SH 系列硅 SPAD 提供极低的噪声和大暗电流,可实现非常高性能的数据和距离测量。它们特别适合超低光照水平检测应用(例如单光子计数和量子通信),适用于光功率小于 1 pW 的情况。C30902SH 可在线性模式(V OP < V BD )下使用,典型增益为 250 或更高,或在“盖革”模式(V OP > V BD )下使用,具有极低且稳定的暗计数率和脉冲后比。在此模式下,无需放大器,单光子检测概率最高可达约 50%。为了获得更高性能,这些高性能 SPAD 可配备单级或双级热电冷却器。
Excelitas Technologies 的 C30902EH 系列雪崩光电二极管采用双扩散“穿透”结构制造而成。这种结构在 400 nm 和 1000 nm 之间具有高响应度,并且在所有波长下都具有极快的上升和下降时间。该设备的响应度与高达约 800 MHz 的调制频率无关。探测器芯片密封在改进的 TO-18 封装中的平板玻璃窗后面。光敏表面的有用直径为 0.5 毫米。C30921EH 采用光导管 TO-18 封装,可将光从聚焦点或直径达 0.25 毫米的光纤高效耦合到探测器。密封的 TO-18 封装允许将光纤连接到光导管末端,以最大限度地减少信号损失,而不必担心危及探测器的稳定性。 C30902EH-2 采用密封 TO-18 封装,内嵌 905nm 通带滤波器,C30902BH 采用密封球透镜,构成了 C30902EH 系列。C30902 APD 系列还具有单光子 APD (SPAD),可在盖革模式和线性模式下以更高的增益运行。有关更多信息,请参阅我们的 C30902SH 数据表。
摘要:热光 (TO) 调制器在波长路由器、激光雷达、光学计算和其他可重构光子系统中发挥着越来越重要的作用。由于 TiO 2 纤芯和具有负热光系数的 SU-8 包层之间的协同效应,首次在 1310 nm 波段展示了基于溶胶-凝胶 TiO 2 平台的高效 TO 可调微环谐振器 (MRR)。以 SU-8 聚合物为顶部包层的 MRR 调制器表现出 33.0 pm/mW 的热调谐效率,比采用二氧化硅顶部包层的 MRR 调制器高 14 倍以上。它的上升/下降时间为 9.4 us/24 us,P π 功率为 7.22 mW,表明在允许在不同基板上进行单片集成的非晶材料平台中,TO 调制器具有相对较高的品质因数。这些结果为溶胶-凝胶 TiO 2 平台在光子集成电路中的应用带来了巨大的希望,并为设计可穿戴设备、可见光/红外通信和生物光子应用中的紧凑高效的 TO 调制器提供了新的视角。
研究了后退火对蓝宝石衬底上日盲多晶氧化镓 (Ga 2 O 3 ) 紫外光电探测器的物理和电学性能的影响。随着后退火温度 (PAT) 从 800 °C 升高到 1000 °C,多晶 Ga 2 O 3 的晶粒尺寸变大,但随着 PAT 进一步升高到 1100 °C,晶粒尺寸变小。随着 PAT 的增加,在蓝宝石上的 Ga 2 O 3 的透射光谱的吸收带边缘发生了蓝移,这是由于蓝宝石衬底中的 Al 掺入 Ga 2 O 3 中形成 (Al x Ga 1 – x ) 2 O 3 造成的。高分辨率X射线衍射和透射光谱测量表明,1100°C退火后的(Al x Ga 1 – x ) 2 O 3 的取代Al组分和带隙分别可以达到0.30和5.10 eV以上。1000°C退火样品的R max 与沉积态器件相比提高了约500%,且1000°C退火样品的上升时间和下降时间较短,分别为0.148 s和0.067 s。这项研究为多晶Ga 2 O 3 紫外光电探测器的制作奠定了基础,并找到了一种提高响应度和响应速度的方法。
1 特性 应用 • 数字控制同步降压电源 2 • 来自数字控制器的输入设置单相和多相频率和占空比应用的工作阶段 • 高达 2MHz 的开关频率 • 特别适合与 UCD91xx 或 • UCD95xx 控制器一起使用的双电流限制保护独立可调阈值 • 高电流多相 VRM/EVRD • 带有可调稳压器的快速电流感应电路,适用于台式机、服务器、电信和消隐间隔防止灾难性的笔记本电脑处理器电流水平 • 使用 m Cs 或 TMS320TM DSP 的数字控制同步降压电源 • 数字输出电流限制标志系列 • 低偏移、48 的增益、差分电流感应放大器描述 • 3.3 V、10 mA 内部稳压器 UCD7230 是 UCD7K 系列数字稳压器的一部分 • 双 TrueDrive™高电流驱动器控制兼容驱动器,适用于采用 • 10 ns 典型上升/下降时间和 2.2 nF 数字控制技术的应用或需要快速负载局部峰值电流限制保护的应用。 • 4.5 V 至 15.5 V 电源电压范围
摘要:本文研制了一种手掌大小的激光光谱仪,该光谱仪基于可调谐二极管激光吸收光谱 (TDLAS) 和新型双层环形电池,用于检测痕量气体。得益于自制电子系统和紧凑光学设计,传感器的物理尺寸最小化为 24×15×16 cm 3 。环形吸收电池分为 2 层,共有 84 个反射,有效光程长度为 8.35 m,用于增强气体的吸收信号。设计了自制电子系统,用于实现分布式反馈 (DFB) 二极管激光控制器、模拟锁相放大器、数据采集和通信。采用免校准扫描波长调制光谱法来确定气体浓度,并减少电子噪声和机械振动引起的随机波动。使用 1.653 μm 的 DFB 激光器演示了对环境空气中 CH 4 的测量。混合气体更新的上升时间和下降时间分别约为16 s和14 s。为验证光谱仪的性能,进行了振动和温度试验,在不同振动频率和温度下对20 ppm CH 4 测定的标准偏差分别为0.38 ppm和0.11 ppm。根据Allan偏差分析,在积分时间为57.8 s时,CH 4 的最低检测限可达22 ppb。
因早产或其他原因而住院的婴儿和幼儿应在出院前不久或出院后立即接受 nirsevimab 治疗。• 其他符合条件的婴幼儿应在 RSV 流行季节前不久或期间,只要 nirsevimab 可用就立即接受 Nirsevimab 治疗。• 虽然 RSV 流行季节的开始时间和持续时间可能有所不同,但在美国大陆的大部分地区,nirsevimab 可在 10 月到 3 月底期间接受治疗。RSV 活动的开始、高峰和下降时间因地理位置而异,提供者可根据公共卫生当局(例如 CDC、卫生部门)或区域医疗中心的指导调整给药时间。只有符合高危标准的儿童才应接受一剂以上的 nirsevimab — 在第一个 RSV 流行季节注射一剂,在第二个 RSV 流行季节注射一剂。 • 注意:对于阿肯色州来说,呼吸道合胞病毒感染季节通常从 11 月 1 日持续到 3 月 31 日。 • 根据 CDC 的一般免疫接种最佳实践,建议同时使用 nirsevimab 和适合年龄的疫苗。在临床试验中,当 nirsevimab 与常规儿童疫苗同时使用时,同时使用方案的安全性和反应原性与单独使用儿童疫苗相似。同时使用时,nirsevimab 预计不会干扰对其他疫苗的免疫反应。
符号 名称 单位 BR 构建速度 mm 3 /sd 0 光束腰直径 µm f acq 高速相机采集频率 Hz f osc,meas 测量的熔池振荡频率 Hz f osc,theo 理论预测的熔池振荡频率 Hz FOV 视场 像素 × 像素 / mm × mm fw 波形频率 Hz l 单轨长度 mm lt 层厚度 µm m 重复次数 - M 2 光束质量因数 - P avg 平均激光发射功率 WP bk 激光发射的背景功率 WP max 最大发射功率 WP pk 激光发射的峰值功率 W SR 空间分辨率 µm/像素 t exp CMOS相机的曝光时间 µs t fall 激光下降时间 µs t illumination 照明光的曝光时间 µs t off 激光关闭时间 µs t on 曝光时间 µs t rise 激光上升时间 µs t tot 波形周期 µs V 沉积材料体积 mm 3 δ 占空比 无量纲 ΔP 波形振幅W Λ obs 观察波长 nm Λ process 激光发射波长 nm α 热扩散率 m 2 /s λ 过程的空间波长 µm
摘要:在这项工作中,我们报告了基于TIO 2 @GaO x n y -ag异质结构的基于高性能的紫外线可见(UV-VIS)光电探测器。Ag颗粒被引入TIO 2 @GaO X n y,以增强异质结设备的可见光检测性能。在380 nm处,TIO 2 @gao x n y -ag的响应率和探测率分别为0.94 A/W和4.79×10 9 Jones,它们在580 nm处增加到2.86 A/W和7.96×10 10 Jones。响应的上升和下降时间分别为0.19/0.23和0.50/0.57 s。唯一的,在580 nm处,制造的设备的响应性比基于Tio 2,Ga 2 O 3和其他异质界的光电探测器高1-4个数量级。TiO 2 @gao x n y -ag杂结型装置的出色光电特性主要归因于金属 - 高中 - 微米 - 金属中的异质结的类型结构的协同效应,而不是有效地促进了成立式的ag级,而不是有效地促进了ag的等化速率。它被有限的差异时间域法(FDTD)模拟和光电测量所照亮。具有高效率检测的TiO 2 @GaO X N Y -AG阵列是适合在节能通信,成像和传感网络中应用的候选者。