[研究背景] 在当今的超老龄化社会中,因疾病或受伤而患有骨骼和关节疾病的人数增加正在成为一个问题,对于植入体内进行治疗的生物材料的需求日益增加。金属材料具有强度与延展性优异的平衡性,且机械可靠性高,因此被广泛用作必须支撑大负荷的骨替代植入物。 植入物需要具有优异的耐磨性和耐腐蚀性。但由于它是一种高强度的金属材料,其力学性能一般与柔韧的活骨有显著差异,而且其特别高的杨氏模量是有问题的。当植入物的杨氏模量远高于骨骼时,大部分力会施加在植入物上而不是周围的骨骼上(这种现象称为应力屏蔽),这会导致骨质萎缩、骨矿物质密度降低和骨折风险增加。因此,近年来,需要开发具有与活骨相当的低杨氏模量的新型金属材料。 临床上最常用的生物医学金属材料是价格低廉的不锈钢SUS316L、耐磨性优良的CoCr合金、杨氏模量相对较低的Ti(钛)合金。然而,不锈钢和现有的钴铬合金的杨氏模量大约比活骨高10倍。虽然存在杨氏模量较低的Ti合金,但其杨氏模量高于活骨,且存在耐磨性低的问题。目前,很少有金属材料能具有与活体骨骼相当的杨氏模量,同时还具有优异的耐磨性和耐腐蚀性。特别是,低杨氏模量这一重要的机械性能通常与高耐磨性之间存在权衡关系,开发出一种兼具这些特性的新型合金一直很困难。 另一方面,在尖端医疗中使用的超弹性合金中,表现出约8%超弹性应变的NiTi(镍钛)合金的应用最为广泛。然而,NiTi合金中含有较高的Ni元素,人们担心其可能会引起过敏反应。为此,人们开发出了不含Ni的Ti基超弹性合金,但其超弹性应变仅为NiTi合金的一半左右。 【主要发现】
骨与种植体接触 (BIC) 是骨整合和牙种植体初期稳定性中最重要的问题之一。种植体周围骨的组织学已被广泛报道。然而,仍然缺乏关于增强骨生物力学、组织学和长期稳定性的信息。增强骨中种植体表面的特性及其对 BIC 和种植体稳定性的影响,以及种植体宏观和微观结构对增强骨中初期稳定性的贡献尚未完全了解。我很高兴邀请您向本期“骨与牙种植体”特刊提交手稿。感兴趣的主题包括但不限于:- 骨与种植体接触和骨体积;- 增强骨生物力学特性和
简单的摘要:骨组织工程是修复大骨缺损的最有希望的方法之一。迄今为止,由于无法完全满足所有临床需求,几个缺点限制了其使用。在这种情况下,近年来,纳米技术在改善生物材料在骨组织工程中的机械,化学物质和生物学特性方面的应用引起了研究人员的极大兴趣。纳米材料(包括纳米颗粒)是此类纳米技术的关键要素,因为它们的高穿透能力和表面积,机械强度增强,改善细胞粘附,分化和生长,增强的抗体特性以及增强的抗性性质和生物相容性。在这篇综述中,我们报告了有关纳米技术和骨组织工程的结合的最新体外和体内研究,作为大骨缺损再生的有前途方法。
继肝脏和肺部之后,骨骼是第三大最常见的转移部位(Nystrom 等人,1977 年)。几乎所有恶性肿瘤都可以转移到骨骼,但 80% 的骨转移源自乳腺癌、前列腺癌、肺癌、肾癌和甲状腺癌(Mundy,2002 年)。许多癌症患者(包括骨转移患者)引入有效的全身治疗延长了生存期。骨转移可能因相关症状和可能的并发症(如疼痛和神经系统损害)而显著降低生活质量。骨转移最严重的并发症是骨骼相关事件 (SRE),定义为病理性骨折、脊髓压迫、疼痛或其他需要紧急干预(如手术或放射治疗)的症状。反过来,越来越多的现代诊断工具可以早期发现无症状骨转移,这些骨转移可以通过局部治疗成功管理,避免发展为 SRE。骨转移的治疗应侧重于缓解现有症状和预防新症状。放射治疗是有症状骨转移患者的标准治疗方法,可提供持久的疼痛缓解,毒性最小,且具有合理的成本效益。从历史上看,剂量以一到五次分剂量开出,并使用简单的计划技术进行。虽然 3D 适形放射治疗仍广泛用于治疗骨转移,但立体定向放射治疗 (SBRT) 等高度适形放射治疗技术的引入开辟了新的治疗可能性,应考虑用于骨转移的特定患者。2022 Elsevier BV 保留所有权利。放射治疗与肿瘤学 173 (2022) 197–206
附带损害。“典型”参数(包括“典型值”)必须由客户的技术专家针对每个客户应用进行验证。Redwire 不转让其专利权或他人权利下的任何许可。Redwire 产品并非设计、预期或授权用作系统或任何其他应用中的组件,在这些应用中,Redwire 产品的故障可能会造成人身伤害或死亡。
摘要:由创伤,感染,肿瘤切除或骨质疏松性骨折引起的节段性骨缺损表现出重大的手术治疗挑战。宿主骨自体移植被认为是恢复功能的黄金标准,但伴随着收获现场合并症的成本。同种异体骨是次要选择,但在与宿主骨骼及其成本合并中具有自身的局限性。因此,需要制定新的骨组织工程策略来治疗骨缺损。在过去的三十年中,使用不同支架或生长因子进行骨组织工程的干细胞取得了巨大进步。已从不同组织中分离出许多干细胞,用于骨组织工程。This review summarizes the progress in using different postnatal stem cells, including bone marrow mesenchymal stem cells, muscle-derived stem cells, adipose-derived stem cells, dental pulp stem cells/periodontal ligament stem cells, periosteum stem cells, umbilical cord-derived stem cells, peripheral blood stem cells, urine-derived stem cells, stem cells from apical papilla, and induced pluripotent stem细胞,用于骨组织工程和修复。本综述还使用外泌体或带有各种脚手架的骨修复的外泌体或细胞外囊泡进行了总结。还将详细讨论和解释每种类型的干细胞的优点和缺点。希望将来,这些临床前结果将转化为骨缺损修复的新再生疗法。
phangdong,Qingyuan人民医院,Qingyuan人民医院511518,中国广东,磷烯和光电学工程实验室深圳市518060,中国C中国健康科学与环境工程学院,深圳技术大学,深圳市518118,中国d nantong智能和新能源材料的关键实验室,化学和化学工程学院,南北226019,Nantong 226019 518038,广东,中国广播F深圳国际生物医学研究所,深圳518116,中国广东,G,吉达斯大学国王阿卜杜勒齐兹大学科学系,吉达斯21589,沙特阿拉伯,阿拉伯语科学系,科学材料科学院(King Arcipersics for Science for Science for Science for Science for Science for Sciencat 61413,P.O。 框9004,沙特阿拉伯phangdong,Qingyuan人民医院,Qingyuan人民医院511518,中国广东,磷烯和光电学工程实验室深圳市518060,中国C中国健康科学与环境工程学院,深圳技术大学,深圳市518118,中国d nantong智能和新能源材料的关键实验室,化学和化学工程学院,南北226019,Nantong 226019 518038,广东,中国广播F深圳国际生物医学研究所,深圳518116,中国广东,G,吉达斯大学国王阿卜杜勒齐兹大学科学系,吉达斯21589,沙特阿拉伯,阿拉伯语科学系,科学材料科学院(King Arcipersics for Science for Science for Science for Science for Science for Sciencat 61413,P.O。 框9004,沙特阿拉伯phangdong,Qingyuan人民医院,Qingyuan人民医院511518,中国广东,磷烯和光电学工程实验室深圳市518060,中国C中国健康科学与环境工程学院,深圳技术大学,深圳市518118,中国d nantong智能和新能源材料的关键实验室,化学和化学工程学院,南北226019,Nantong 226019 518038,广东,中国广播F深圳国际生物医学研究所,深圳518116,中国广东,G,吉达斯大学国王阿卜杜勒齐兹大学科学系,吉达斯21589,沙特阿拉伯,阿拉伯语科学系,科学材料科学院(King Arcipersics for Science for Science for Science for Science for Science for Sciencat 61413,P.O。 框9004,沙特阿拉伯phangdong,Qingyuan人民医院,Qingyuan人民医院511518,中国广东,磷烯和光电学工程实验室深圳市518060,中国C中国健康科学与环境工程学院,深圳技术大学,深圳市518118,中国d nantong智能和新能源材料的关键实验室,化学和化学工程学院,南北226019,Nantong 226019 518038,广东,中国广播F深圳国际生物医学研究所,深圳518116,中国广东,G,吉达斯大学国王阿卜杜勒齐兹大学科学系,吉达斯21589,沙特阿拉伯,阿拉伯语科学系,科学材料科学院(King Arcipersics for Science for Science for Science for Science for Science for Sciencat 61413,P.O。 框9004,沙特阿拉伯phangdong,Qingyuan人民医院,Qingyuan人民医院511518,中国广东,磷烯和光电学工程实验室深圳市518060,中国C中国健康科学与环境工程学院,深圳技术大学,深圳市518118,中国d nantong智能和新能源材料的关键实验室,化学和化学工程学院,南北226019,Nantong 226019 518038,广东,中国广播F深圳国际生物医学研究所,深圳518116,中国广东,G,吉达斯大学国王阿卜杜勒齐兹大学科学系,吉达斯21589,沙特阿拉伯,阿拉伯语科学系,科学材料科学院(King Arcipersics for Science for Science for Science for Science for Science for Sciencat 61413,P.O。框9004,沙特阿拉伯
Berner,A.,Henkel,J.,Woodruff,M.A.,Steck,R.,Nerlich,M.,Schuetz,M.A。,&Hutmacher,D.W。(2015)。 延迟的微创注入同种异性骨髓基质细胞表可再生卵临床动物模型中的大骨缺陷。 干细胞转化医学,4(5),503-512。 Cheong,V。S.,Fromme,P.,Mumith,A.,Coathup,M.J。,&Blunn,G。W.(2018)。 新型的自适应有限元算法,以预测添加剂生产的多孔植入物中的骨向内生长。 生物医学材料的机械行为杂志,87,230-239。 doi:https://doi.org/10.1016/j.jmbbm.2018.07.019 Cipitria,A.,Reichert,J.C.,Epari,D.R.,D.R.,Saifzadeh,S. 。 。 Hutmacher,D。W.(2013)。 多丙酮酸支架和降低的RHBMP-7剂量,用于在绵羊胫骨中再生。 生物材料,34(38),9960-9968。 Dimitriou,R.,Jones,E.,McGonagle,D。和Giannoudis,P。V.(2011)。 骨骼再生:当前的概念和未来的方向。 BMC Medicine,9(1),66。DOI:10.1186/1741-7015-9-66 Emara,K。M.,Diab,R。A.和Emara,A。K.(2015)。 裂缝非工会管理的最新生物学趋势。 世界骨科杂志,6(8),623-628。doi:10.5312/wjo.v6.i8.623 Fitzpatrick,N.,Sajik,D。,&Farrell,M。(2013)。 猫胸腔关节固定术使用根据经皮板关节固定术的原理应用的前轮廓背板。 兽医和比较骨科与创伤学,26(05),399-407。 当前的干细胞研究与治疗,3(4),254-264。Berner,A.,Henkel,J.,Woodruff,M.A.,Steck,R.,Nerlich,M.,Schuetz,M.A。,&Hutmacher,D.W。(2015)。延迟的微创注入同种异性骨髓基质细胞表可再生卵临床动物模型中的大骨缺陷。干细胞转化医学,4(5),503-512。Cheong,V。S.,Fromme,P.,Mumith,A.,Coathup,M.J。,&Blunn,G。W.(2018)。 新型的自适应有限元算法,以预测添加剂生产的多孔植入物中的骨向内生长。 生物医学材料的机械行为杂志,87,230-239。 doi:https://doi.org/10.1016/j.jmbbm.2018.07.019 Cipitria,A.,Reichert,J.C.,Epari,D.R.,D.R.,Saifzadeh,S. 。 。 Hutmacher,D。W.(2013)。 多丙酮酸支架和降低的RHBMP-7剂量,用于在绵羊胫骨中再生。 生物材料,34(38),9960-9968。 Dimitriou,R.,Jones,E.,McGonagle,D。和Giannoudis,P。V.(2011)。 骨骼再生:当前的概念和未来的方向。 BMC Medicine,9(1),66。DOI:10.1186/1741-7015-9-66 Emara,K。M.,Diab,R。A.和Emara,A。K.(2015)。 裂缝非工会管理的最新生物学趋势。 世界骨科杂志,6(8),623-628。doi:10.5312/wjo.v6.i8.623 Fitzpatrick,N.,Sajik,D。,&Farrell,M。(2013)。 猫胸腔关节固定术使用根据经皮板关节固定术的原理应用的前轮廓背板。 兽医和比较骨科与创伤学,26(05),399-407。 当前的干细胞研究与治疗,3(4),254-264。Cheong,V。S.,Fromme,P.,Mumith,A.,Coathup,M.J。,&Blunn,G。W.(2018)。新型的自适应有限元算法,以预测添加剂生产的多孔植入物中的骨向内生长。生物医学材料的机械行为杂志,87,230-239。 doi:https://doi.org/10.1016/j.jmbbm.2018.07.019 Cipitria,A.,Reichert,J.C.,Epari,D.R.,D.R.,Saifzadeh,S.。。Hutmacher,D。W.(2013)。多丙酮酸支架和降低的RHBMP-7剂量,用于在绵羊胫骨中再生。生物材料,34(38),9960-9968。Dimitriou,R.,Jones,E.,McGonagle,D。和Giannoudis,P。V.(2011)。骨骼再生:当前的概念和未来的方向。BMC Medicine,9(1),66。DOI:10.1186/1741-7015-9-66 Emara,K。M.,Diab,R。A.和Emara,A。K.(2015)。裂缝非工会管理的最新生物学趋势。世界骨科杂志,6(8),623-628。doi:10.5312/wjo.v6.i8.623 Fitzpatrick,N.,Sajik,D。,&Farrell,M。(2013)。猫胸腔关节固定术使用根据经皮板关节固定术的原理应用的前轮廓背板。兽医和比较骨科与创伤学,26(05),399-407。当前的干细胞研究与治疗,3(4),254-264。Fröhlich,M.,Grayson,W。L.,Wan,L。Q.,Marolt,D.,Drobnic,M。,&Vunjak-Novakovic,G。(2008)。 组织工程骨移植:生物学需求,组织培养和临床相关性。 Giannoudis,P.,Panteli,M。和Calori,G。(2014年)。 骨骼康复:钻石概念。 在G. Bentley中(ed。 ),欧洲教学讲座(第1卷 14,pp。 3-16):施普林格柏林海德堡。 Gomez-Barrena,E.,Rosset,P.,Lozano,D.,Stanovici,J.,Emmthaller,C。和Gerbhard,F。(2015)。 骨断裂愈合:延迟的工会和不连接中的细胞疗法。 骨,70,93-101。 doi:10.1016/j.bone.2014.07.033Fröhlich,M.,Grayson,W。L.,Wan,L。Q.,Marolt,D.,Drobnic,M。,&Vunjak-Novakovic,G。(2008)。组织工程骨移植:生物学需求,组织培养和临床相关性。Giannoudis,P.,Panteli,M。和Calori,G。(2014年)。骨骼康复:钻石概念。在G. Bentley中(ed。),欧洲教学讲座(第1卷14,pp。3-16):施普林格柏林海德堡。Gomez-Barrena,E.,Rosset,P.,Lozano,D.,Stanovici,J.,Emmthaller,C。和Gerbhard,F。(2015)。 骨断裂愈合:延迟的工会和不连接中的细胞疗法。 骨,70,93-101。 doi:10.1016/j.bone.2014.07.033Gomez-Barrena,E.,Rosset,P.,Lozano,D.,Stanovici,J.,Emmthaller,C。和Gerbhard,F。(2015)。骨断裂愈合:延迟的工会和不连接中的细胞疗法。骨,70,93-101。 doi:10.1016/j.bone.2014.07.033
在第5周左右发育次数的发育范围内发生了大小。主要的口感将形成上颌骨的前颌骨部分。这小部分位于尖孔的前面,并包含上颌切牙。次生口感:是一种解剖结构,将鼻腔与许多脊椎动物的口腔分开,它由骨头硬口感和后方的肌肉软化。硬pa对正常的喂养和语音至关重要,而柔软的触觉是可移动的,并在吞咽过程中关闭了鼻气关闭。人类胚胎学发育的次要味觉一周的发展是在6个产物中开始的,最初在端长的过程中逐渐逐渐逐渐偏向于发展的位置,并随后逐渐偏向于范围的位置,从而逐渐地构成了范围的位置,从而逐渐地构成了范围的范围,从而使人们逐步地构成了范围的范围,从而使人们保持了范围的范围。货架高程。随着下颌骨的生长和膨胀,舌头向下移动,允许
在每种情况下,临床医生都需要知道如何使用该方案适当地管理这些急性下巴问题,该方案将迅速解决症状,同时又可以防止慢性疼痛和长时间的颌骨功能限制。疼痛发作后,建议立即采用快速治疗的关节和肌肉扭伤/应变(JAMSS)方案,以提高愈合,分辨率并防止延迟恢复的潜力[19-21]。由于存在慢性疼痛的危险因素,建议在最初几周内疼痛时,建议进行延迟恢复方案[22-23]。在本协议中,将患者培训与循证治疗相结合将最大程度地减少过渡到慢性疼痛。本文介绍了这些协议的临床适应症,方案,理由和结果。
