基于图的模型已广泛应用于欺诈检测任务。由于图神经网络 (GNN) 的发展,最近的研究提出了许多基于同构或异构图的 GNN 欺诈检测器。这些工作利用现有的 GNN 并汇总邻域信息来学习节点嵌入,这依赖于邻居共享相似的上下文、特征和关系的假设。然而,欺诈者造成的不一致性问题很少被研究,即上下文不一致、特征不一致和关系不一致。在本文中,我们介绍了这些不一致性并设计了一个新的 GNN 框架 GraphConsis 来解决不一致问题:(1)对于上下文不一致,我们建议将上下文嵌入与节点特征相结合; (2) 针对特征不一致,我们设计了一个一致性评分来过滤不一致的邻居并生成相应的采样概率;(3) 针对关系不一致,我们学习与采样节点相关的关系注意权重。对四个数据集的实证分析表明,不一致问题在欺诈检测任务中至关重要。大量实验证明了 GraphConsis 的有效性。我们还发布了一个基于 GNN 的欺诈检测工具箱,其中包含 SOTA 模型的实现。代码可在 https://github.com/safe-graph/DGFraud 获得。
1底物残基和底物结合位点的命名法是根据Schechter和Berger(1967)的说法。底物残基是从裂解位点指定为P1,P2,P3等的N末端,以及带有P1',p2',p3'等的C-末端。适当的底物绑定位点用S1,S2,S3等指定。或S1',s2',s3'等。