直到 2015 年,阐明利什曼原虫蛋白质功能的功能丧失研究都依赖于通过同源重组进行基因破坏。随后,CRISPR/Cas9 革命影响到了这些原生动物寄生虫,只需一轮转染即可实现有效的基因组编辑。此外,LeishGEdit 的开发(一种基于 PCR 的工具包,用于使用 CRISPR/Cas9 生成敲除和标记系)使基因组编辑更加直接有效。在此系统中,质粒 pTB007 被递送至利什曼原虫,在 b-微管蛋白基因座中进行游离表达或整合,并稳定表达 T7 RNA 聚合酶和 Cas9。在南美洲,尤其是在巴西,利什曼原虫 (Viannia) braziliensis 是皮肤利什曼病最常见的病原体。与利什曼原虫相比,L. braziliensis b-微管蛋白基因座表现出显著的序列差异,这阻碍了 pTB007 的有效整合和 Cas9 的稳定表达。为了克服这一限制,pTB007 中存在的 L. major b-微管蛋白序列被利什曼原虫 (Viannia) b-微管蛋白保守序列取代,从而产生了 pTB007_Viannia 质粒。这一修改使 pTB007_Viannia 盒式磁带成功整合到 L. braziliensis M2903 基因组中,并且计算机预测表明这也可以在其他 Viannia 物种中实现。通过敲除鞭毛蛋白 PF16 来评估 Cas9 的活性,这导致这些转染子中出现不动表型。内源性PF16也成功被mNeonGreen标记,并采用基因座互补策略将PF16基因的C端标记拷贝返回到原始基因座,从而恢复游泳能力。
摘要 COVID-19 已严重影响医院感染预防和控制 (IPC) 实践,尤其是在重症监护病房 (ICU)。这经常导致多重耐药菌 (MDRO) 的传播,包括耐碳青霉烯类鲍曼不动杆菌 (CRAB)。本文,我们报告了意大利一家大型 ICU COVID-19 中心医院的 CRAB 疫情管理情况,并通过全基因组测序 (WGS) 进行了回顾性基因型分析。通过 WGS 分析了 2020 年 10 月至 2021 年 5 月期间被诊断为 CRAB 感染或定植的重症 COVID-19 机械通气患者身上获得的细菌菌株,以评估抗菌素耐药性和毒力基因以及可移动遗传元素。结合流行病学数据,系统发育分析用于识别推定的传播链。 40 例中 14 例 (35%) 被诊断为 CRAB 感染,40 例中 26 例 (65%) 被诊断为定植,7 例 (17.5%) 在入院后 48 小时内分离出 CRAB。所有 CRAB 菌株均属于巴斯德序列 2 型 (ST2) 和 5 种不同的牛津 ST,并呈现携带 bla OXA-23 基因的 Tn 2006 转座子。系统发育分析显示,ICU 内部和ICU 之间存在四条传播链,主要在 11 月至 2021 年 1 月期间传播。量身定制的 IPC 策略由 5 点捆绑组成,包括 ICU 模块临时转换为 CRAB-ICU 和动态重新开放,对 ICU 入院率的影响有限。实施后,未检测到 CRAB 传播链。我们的研究强调了将经典流行病学研究与基因组研究相结合以确定疫情期间的传播途径的潜力,这可能是确保 IPC 策略和防止 MDRO 传播的有力工具。
随着越来越多的抗菌素耐药性被发现,全世界对新型抗菌素的需求正变得越来越迫切。为此,我们使用 Tiny Earth 模型从明尼苏达州湿地的土壤样本中识别、分离和鉴定潜在的新型抗菌素来源。Tiny Earth 项目是一个学生采购抗菌素发现社区,致力于发现潜在的新型抗菌素。该项目由明尼苏达州资源立法公民委员会 (LCCMR) 提供资金支持。当前的研究项目比较了三个连续学期的普通微生物学 (2021 年秋季、2022 年秋季和 2023 年秋季) 的结果。使用的培养基如下:营养物、10% 胰蛋白酶大豆、放线菌和甘油酵母提取物 (gyea)。以下被用作 ESKAPE 安全相关病原体:肠球菌、金黄色葡萄球菌、大肠杆菌、贝氏不动杆菌、恶臭假单胞菌和产气克雷伯氏菌。化学提取包括在琼脂平板上培养分离物,并使用乙酸乙酯提取要针对 ESKAPE 安全相关病原体进行测试的物质。该过程产生了从 2021 年秋季回收的 58 个分离物,其中 43 个分离物被发现是纯净的,其中 13 个对 ESKAPE 病原体表现出持续抑制作用。从 2022 年秋季样本中,有 34 个分离物表现出持续抑制作用,并且正在不断努力分离纯培养物。最后,在本秋季学期,我们初步回收了 75 种分离物,这些分离物显示出对安全相关病原体的抑制作用。我们将介绍正在进行的分离纯培养物和表征与观察到的抑制作用相关的化学物质的研究。我们还将介绍在该项目过程中获得的经验教训以及与湿地环境相关的未来药物发现机会。
专注于手术的持续时间,但找不到有关其使用和脚跟溃疡的数据。那么为什么风险无法识别?固定性是压力溃疡总体上的主要危险因素,而脚跟也是如此。单腿固定的膝盖替换手术使脚跟处于危险之中。因此,在这些患者中,其他危险因素(例如尿失禁和营养不良)并不总是起着重要作用。此外,糖尿病的神经病并不总是纳入风险,周围动脉疾病并不总是被识别。腿不动,神经病和动脉流不良是三大变量。4外周动脉疾病增加了脚跟压疮的风险。当将压力施加到任何组织上时,组织可能会缺血。仅在去除压力时,动脉的血液才能流入组织并去除氧债务和细胞废物。当存在动脉粥样硬化时,僵硬的血管将无法有效扩张,氧气债务将保持更长的效果。动脉血流最终将进入组织,除了临界肢体缺血患者。在一项匹配的病例对照研究中,有15名患者被确定为脚后跟2、3或4级压力溃疡,并与15个匹配的对照组进行了比较,而没有脚后跟的压力溃疡。参与者被确定为脚踝臂压指数(ABPI)<0.9或> 1.3的垫子。尚不清楚患者高跟鞋中恢复氧气债务所需的时间。5糖尿病周围神经病是脚跟压疮的重要危险因素。患有脚跟压力溃疡的患者以前没有诊断垫,而没有脚跟压力溃疡(赔率:11; Twilley and Jones,2016年)。糖尿病的几个方面增加了脚跟上的压溃疡的风险;糖尿病周围神经病(DPN)是一个主要方面。高血糖和血脂异常分别是1型糖尿病患者DPN的主要原因。糖尿病周围神经病(DPN)的患病率在6%至51%之间,具体取决于人口。据估计,所有糖尿病儿童中有一半的持续时间为5年或更长时间
海德堡材料是世界上最大的建筑材料和解决方案综合制造商之一,并在5大洲运营。我们的核心产品是水泥,骨料(沙子,砾石和碎石),现成的混凝土和沥青。关键业务流程包括提取原材料和建筑材料的生产,以及其销售和分销给客户。提供的其他服务是全球贸易,尤其是在水泥和熟料中。我们经营大约130个水泥厂(加上20种合资企业的一部分),不到600个采石场和骨料坑,以及大约1,320个现成的混凝土生产地点。总共在50多个国家(加上属于合资企业的350多个生产地点)的约2500个地点雇用了50,780名员工。在2022年,集团收入为21.1亿欧元。行动中心是对环境的责任。作为前进的碳和中不动性的前跑者,海德堡材料为未来制作了材料解决方案。使用我们的新且全球的企业品牌海德堡材料,我们将转型为脸和锚点。同时,我们以我们的名义忠于“海德堡”(Heidelberg) - 这是150年的遗产,具有可靠性,脚踏实地和市场领导力的代名词。使用“材料”,我们展望未来 - 不仅仅是水泥,可持续的,重点是循环经济。在2023年3月,我们通过提供有关我们的财务发展和可持续性承诺的深入信息,发布了我们的第一个“合并年度报告”。2。3。在这样做时,我们正在考虑报告标准,例如GRI,HGB,IFRS,SASB和TCFD。我们的新可持续性承诺2030联合国可持续发展目标(SDG)塑造了我们的战略和可持续性承诺。在2023年2月,我们发布了2030年的新可持续性承诺(SC2030),旨在支持我们的愿景,以建立更可持续的未来,即:1。净零:我们驱动了行业的脱碳并提供低碳产品。安全和包容性:我们将员工,社区和供应商的健康和福祉放在我们的业务运营的核心上。自然积极:我们通过行业领先的生物多样性计划和可持续水管理为自然积极世界做出了贡献
临床对新型抗菌抗生素的真正需求源于新机会性病原体的出现和传播,尤其是在免疫系统日益衰弱的宿主群体中。感染这些罕见或机会性病原体所导致的严重健康问题是艾滋病流行以及恶性癌症化疗和器官移植日益流行的结果。治疗需求通常可以通过优化现有化疗药物的使用来满足。然而,常用的处方抗生素可能不足以覆盖这些生物体,而抗生素耐药性的快速传播或发展可能会危及标准的经验性治疗。事实上,抗生素耐药性的演变和传播是成功覆盖抗生素的最大威胁,因此也是寻找新疗法的驱动力。常见或复发性病原体对标准抗生素疗法的耐药性是一个重大的医院内问题,在社区获得性感染中也越来越重要。在医院环境中,尤其是三级医疗机构 (40),耐药革兰氏阳性菌感染的发病率正在增加,尤其是金黄色葡萄球菌、凝固酶阴性葡萄球菌、棒状杆菌和肠球菌,而革兰氏阴性菌(包括假单胞菌、沙雷氏菌和不动杆菌)的耐药性仍然构成问题 (20)。最近,艾滋病患者、非法吸毒者和囚犯中出现了对多种抗生素具有耐药性的结核分枝杆菌强毒株,这引起了极大的恐慌,对更广泛的社区构成了威胁,并可能导致疾病复发 (1)。经验性治疗有利于使用并因此开发广谱药物和组合 (7),即使潜在需求可能是治疗特定问题病原体,例如假单胞菌或耐甲氧西林葡萄球菌。虽然未来的技术改进可能会带来快速诊断方法,并导致使用窄谱药物进行有效给药,但目前的策略是开发具有良好药理学特性和(相对)广谱活性的抗生素,包括针对问题病原体的活性。对于经验性给药,抗生素的有效谱由 90% 的测试菌株的 MIC 决定,当它基于足够大的样本量并且与 MIC 范围的低端有显著差异时,这是由于存在
抗菌素耐药性 (AMR) 对全球健康构成严重威胁,凸显了创新抗生素发现策略的迫切需求。虽然肽设计方面的最新进展已经产生了许多抗菌剂,但由于不可预测且资源密集的反复试验方法,通过实验优化这些分子仍然具有挑战性。在这里,我们介绍了 APEX 生成优化 (APEX GO),这是一个生成人工智能 (AI) 框架,它将基于变压器的变分自动编码器与贝叶斯优化相结合,以设计和优化抗菌肽。与筛选现有分子固定数据库的传统监督学习方法不同,APEX GO 通过任意修改模板肽来生成全新的肽序列,代表了肽设计和抗生素发现的范式转变。我们的框架引入了一种新的肽变分自动编码器,具有设计和多样性约束,以保持与特定模板的相似性,同时实现序列创新。这项工作代表了在任何环境下对生成贝叶斯优化的首次体外和体内实验验证。 APEX GO 使用十种已灭绝的肽作为模板,生成了具有增强抗菌性能的优化衍生物。我们合成了 100 种优化肽,并进行了全面的体外表征,包括抗菌活性、作用机制、二级结构和细胞毒性评估。值得注意的是,APEX GO 在增强对临床相关革兰氏阴性病原体的抗菌活性方面实现了出色的 85% 真实实验命中率和 72% 的成功率,优于以前报道的抗生素发现和优化方法。在鲍曼不动杆菌感染的临床前小鼠模型中,几种 AI 优化的分子(最显著的是 mammuthusin-3 和 mylodonin-2 的衍生物)表现出强大的抗感染活性,可与广泛使用的最后手段抗生素多粘菌素 B 相媲美或超过多粘菌素 B。这些发现凸显了 APEX GO 作为一种用于肽设计和抗生素优化的新型生成式 AI 方法的潜力,为加速抗生素发现和应对日益严峻的 AMR 挑战提供了强有力的工具。
测试的代表性微生物:(部分概要)HyGenesis 系统:细菌 醋酸钙不动杆菌 1 真菌 黑曲霉 基于独特的抗菌技术,可有效控制各种处理物品和基质上的细菌、真菌、藻类 枯草芽孢杆菌 烟曲霉 和酵母。抗菌活性物质是在美国环境保护局和全球类似监管机构注册的猪布鲁氏菌 杂色曲霉 布鲁氏菌 出芽短梗霉 伯克霍尔德菌 洋葱毛壳菌。这种抗菌剂已安全有效地使用了三十多年。产气荚膜梭菌 镰刀菌 鲍氏棒状杆菌 粉红粘帚菌 本表是应众多要求编制的,要求提供该技术有效的微生物清单。我们选择了大肠杆菌 ATCC 23266 白色青霉菌,以提供测试谱,其中大肠杆菌 1 黄青霉菌 代表所有重要类型和猪嗜血杆菌 柑橘青霉菌 微生物种类。流感嗜血杆菌 秀丽隐杆线虫 肺炎克雷伯菌 ATCC 4352 绳状青霉 干酪乳杆菌 腐殖质青霉 乳酸明串珠菌 青霉菌 单核细胞增多性李斯特菌 变异青霉 耐甲氧西林葡萄球菌 金黄色葡萄球菌 黑根霉 微球菌 sp. Stachybotrys atra 耻垢分枝杆菌 黄木霉 结核分枝杆菌 趾间毛癣菌 痤疮丙酸杆菌 须毛癣菌 奇异变形杆菌 藻类 奇异变形杆菌1 鱼腥藻 B-1446-1C 普通变形杆菌 小球藻 铜绿假单胞菌 Gium sp. LB 9c 铜绿假单胞菌 PRD-10 波恩颤菌 LB143 铜绿假单胞菌 1 胸膜球菌属 LB11 洋葱假单胞菌 四尾假单胞菌 细长月牙藻 B-325 猪霍乱沙门氏菌 团藻属 LB 9 伤寒沙门氏菌 酵母菌 金黄色葡萄球菌(无色素)1 白色念珠菌 金黄色葡萄球菌(有色素)1 酿酒酵母 表皮葡萄球菌 1 病毒 粪链球菌 禽流感 变形链球菌 HIV B 万古霉素耐药肠球菌 (VRE) 甲型流感 野油菜黄单胞菌 SARS
摘要 在早期发现与 2 型糖尿病 (T2DM) 相关的危险因素可能有助于减少甚至预防该疾病的未来后果。迄今为止,尚未对利比亚大学生进行有关超重或肥胖等相关危险因素的研究。本研究的目的是确定的黎波里大学学生的血糖水平与人体测量数据、年龄和 2 型糖尿病家族史之间的任何相关性。一项横断面研究涉及 246 名大学生 (年龄 18-43 岁) 的调查问卷、人体测量和血糖水平。招募工作于 2024 年 7 月 15 日至 8 月 1 日在的黎波里大学医学技术学院的研究实验室进行。Pearson 相关性检验显示血糖水平与臀围之间存在正相关性 [r= 0.139,P= 0.029]。接近统计学意义水平的另外两个风险因素是体重 [r= 0.115,P= 0.071] 和 BMI [r= 0.117,P= 0.067]。通过鼓励年轻人将臀围保持在正常范围内,可以预防或减轻 2 型糖尿病。引用此文章。Al-Deib A、Eljali S、Ehfied N、Alallam F。的黎波里大学大学生血糖水平与体质测量值的相关性。Alq J Med App Sci。2024;7(4):1109-1115。https://doi.org/10.54361/ajmas.247427 引言 2 型糖尿病 T2DM 最初被认为是一种影响中老年人的疾病,然而,现在甚至在更年轻的年龄(青少年和年轻人)也观察到了它。一项旨在监测美国 2 型糖尿病患病率的多中心研究显示,10 至 20 岁人群的 2 型糖尿病患病率有所上升 [1]。现有的研究表明,30 多岁的人患 2 型糖尿病的可能性越来越大 [2]。鉴于该年龄组 2 型糖尿病的患病率,利比亚的黎波里的大多数大学生都属于这个年龄段,对这个群体进行检测将有助于了解和有效治疗该国的糖尿病。此外,国际糖尿病联合会 (IDF) 糖尿病图谱(第 10 版,2021 年)发现,2021 年(针对 20-79 岁人群),全球成年人口中有 10.5% 患有糖尿病。预计到 2045 年,这一患病率将上升到 12.2% [3]。不良的生活习惯(如久坐不动、缺乏体育锻炼、饮食质量差、饮酒和吸烟以及睡眠不足)与肥胖有关,尤其是在占青年人口相当一部分的本科生中 [4–6]。本科生肥胖问题进一步加剧,原因是
A3A 靶向转移治疗 A POBEC 3A (A3A) 是人类最重要的脱氨酶之一,可使单链 DNA (ssDNA) 发生超突变。超突变与多种肿瘤-癌症转移进展有关 1-4 5-7 。已报道 APOBEC 依赖性癌症类型,如肺癌 8、9-11 、前列腺癌 12 、尿路上皮癌 13 、膀胱肿瘤 14 、卵巢鳞状癌 15、16 、乳腺癌 17 、子宫内膜异位症/宫颈癌 18、19 和头部 20 ,超突变酶也与某些自身免疫有关 21 。为了使 ssDNA 超突变,A3 酶诱导脱氧胞嘧啶随机脱氨为脱氧尿嘧啶 (dC-to-dU),这已通过人工模拟得到证实 22 。人类 A3A 抑制已被提议作为一种干扰转移产生的可能治疗方法 23 。然而,A3A 抑制受到其他七种结构相关的人类 A3 酶 (A、B、C 24 、D、F、G 25 、H 和 AID 26 ) 存在的限制,这些酶具有生理/防御功能和可控诱变,例如抗体多样化 27 28 、肠细胞更新 29 30 、衰老 31 或抗病毒活性 32、33 34 。经晶体学和低温电子显微镜测定,大多数人类 A3 酶表现出具有相似 3D 结构的不对称同型二聚体(异型二聚体)结构(A 35 、B 36 、C 24 、F 37 、G 25 、H 38 、AID 26 ,表 S2 和图形摘要)。每个 A3 单体包含 ssDNA 结合所需的结构域和锌依赖性 dC 到 dU 脱氨的独立结构域。由于 A3A ssDNA 结合和二聚体界面的可能抑制剂探索很少 25 ,因此本文使用共同进化对接通过计算探索了这些可能的靶点。最终目标是探索任何与肿瘤转移有关的超突变的计算机干扰。这里采用了基于 Java 的 Data Warrior B uild E volutionary Library (DWBEL) 2-5 协同进化算法,作为筛选超大型类药库 39, 40 或从蛋白质序列 41-43 中预测机器学习对接模型的一种替代方法。具体而言,DWBEL 协同进化标准经过调整,可随机生成数万个原始子代,以选择数百个具有低纳摩尔亲和力的最佳无毒适配子代。类似的协同进化对接预测,当靶向其他蛋白质-配体对时,亲和力会更高。例如,针对耐药葡萄球菌的新型抗生素 44 、针对不动杆菌的 Abaucin 衍生物 45 、非人类抗凝血灭鼠剂 46 、猴痘 Tecovirimat 抗性突变体 47 、内腔 SARS omicron 48 、炎性冠状病毒 ORF8 蛋白 49 、人类 K + 通道的原核模型 50 、VHSV 弹状病毒的内腔 51 、疟疾环子孢子蛋白 47 、RSV 抗性突变体 52 和抗 HIV-Vif A3G 53 。