摘要。最近对新型的线性变换的几何形状构成了新的兴趣。这激发了对此类不变的研究,以在根系,反射群,谎言组和谎言的背景下进行某种类型的几何转换:Coxeter转换。我们使用高性能计算对所有Coxeter转换进行了所有Coxeter转换的详尽计算,以选择简单根的基础并计算其不变性。此计算代数范式生成一个数据集,然后可以使用来自数据科学的技术(例如智能和无监督的机器学习)进行开采。在本文中,我们关注神经网络分类和主成分分析。由于输出(不变性)是由选择根源的选择以及Coxeter元素中相应反射的置换顺序完全确定的,因此我们期望在映射中进行巨大的退化。这为机器学习提供了完美的设置,实际上,我们看到数据集可以被机器学习以非常高的精度。本文是使用Cli杀性代数在实验数学方面进行的泵送研究,表明此类cli效应代数数据集可以适合机器学习,并阐明了这些新颖的几何学和其他知名几何不变的关系,并引起了分析结果。
摘要。胸肌分割是乳腺磁共振成像(MRI)的各种计算机辅助应用中的关键步骤。由于胸部和乳房区域之间的伪影和同质性,胸肌边界估计并不是一项琐碎的任务。在本文中,提出了一种基于深度学习的全自动分割方法,以准确描述轴向乳房MR图像中的胸肌边界。提出的方法涉及两个主要步骤:胸肌分割和边界估计。对于胸肌分割,基于U-NET结构的模型用于从输入图像中分离胸肌。接下来,通过候选点检测和轮廓分割来估计胸肌边界。使用两个Real-World数据集,我们自己的私人数据集和一个公开可用的数据集对所提出的方法进行了定量评估。第一个数据集包括12名患者乳房MR图像,第二个数据集由80名患者乳房MR图像组成。所提出的方法在第一个数据集中达到了95%的骰子得分,第二个数据集的骰子得分为89%。在大规模定量乳房MR图像上评估该方法的高分割性能表达了其在将来的乳腺癌临床应用中的潜在适用性。
构建局部表面表示最近在3D视觉中引起了很大的关注,从而使复杂的3D形状成为较简单的局部地理序列。受到2D离散代表学习的进步的启发,最近的方法提出了将3D形状分解为常规网格,每个单元格与从可学习的代码簿中采样的离散代码相关联。不幸的是,现有方法忽略了局部刚性自相似性以及与方向可能变化有关的3D几何形状固有的歧义。因此,此类技术需要非常大的代码手册来限制几何和姿势的所有可能变异性。在这项工作中,我们提出了一种新颖的生成模型,该模型通过将local的几何形状紧密地嵌入旋转和翻译不变的manner中来证明产生质量。此策略允许我们的离散代码代码书通过避免本地和全局冗余来表达更大范围的几何结构。至关重要的是,我们通过仔细的体系结构设计表明,我们的方法可以从本地嵌入中恢复有意义的形状,同时确保全球一致性。进行的实验表明,在相似的设置下,我们的方法优于基线方法。
摘要 - 在许多现实的设置中都出现了比擦除错误更难纠正的Quantum删除。因此,为量子缺失通道开发量子编码方案是相关的。迄今为止,对于哪些显式量子误差校正代码可以打击量子删除,尚不了解。我们注意到,具有t + 1距离的任何置换量量子代码都可以纠正量子和Qudit设置中任何正整数t的t量子删除。利用在擦除误差下的置换不变量子代码的编码属性时,我们得出了量子缺失下置换量的量子代码的相应编码边界。我们将注意力集中在n个Qubit置换不变的量子代码的特定家族上,我们称之为转移的GNU代码。这项工作的主要结果是它们的编码和解码算法可以在O(n)和O(n 2)中执行。
摘要 - 自治车辆(AV)越来越受到黑客的攻击。但是,AVS的系统安全至关重要,因为任何成功的攻击都会导致严重的经济损失,设备损失甚至人类生命的损失。评估新算法的良好安全原则是表明该提案对强大的对手有抵抗力。因此,在这张海报中,我们意识到最糟糕的攻击类型,称为隐形攻击,对转向控制系统,这对于AVS的横向控制很重要。我们提出的隐形攻击的核心是使用模型预测性控制(MPC),状态空间模型(SSM),系统识别(SI)和动态时间扭曲(DTW)允许攻击者准确模拟系统行为,从而允许它们执行不可检测的攻击。
摘要:已经提出,神经系统具有产生21种动作的能力,因为它重新使用了一些不变的代码。先前的工作已经确定,在不同运动中,动态23的神经种群活动的22个动态是相似的,其中动态23是指人口活动的瞬时空间模式如何变化。在这里,我们测试24神经种群的不变动态是否实际上用于发出25个直接运动的命令。使用脑机界面,该脑机界面将猕猴的26皮层活性转化为神经假体光标的命令,我们发现在不同运动中具有不同的神经活动模式发出了相同的27命令。然而,28这些不同的模式是可以预测的,因为我们发现活动29模式之间的过渡受到跨运动的相同动力的控制。这些不变动态是30个低维的动力学,并且在批判性地与脑机界面保持一致,因此它们预测了31个神经活动的特定组成部分,实际上发出了下一个命令。我们引入了32个最佳反馈控制模型,该模型表明不变动态可以帮助将33个运动反馈转换为命令,从而减少了神经人口需要34控制运动的输入。总的来说,我们的结果表明,不变的动态驱动器命令35可以控制各种动作,并显示如何与不变的36动力学集成反馈以发出可通用的命令。37
高斯流程(GPS)[1]是机器学习中的一种多功能工具,但对它们的构成诸如阳性,单调性或物理约束之类的约束是具有挑战性的[2]。过去的作品已考虑将GPS作为差异方程的解决方案[3],时间和光谱重建问题[4],或通过线性操作员注入域特异性约束[5]。其他作品与非线性函数相结合的GP输出[6,7],通过约束边际可能性[8]或铸造线性约束作为截短的多变量高斯分布的条件期望,将输出结合到正值[9]。在这项工作中,我们旨在发现一个积极价值的天文光谱的潜在空间。在过去的降低谱图[10,11,12]的作品中,[13]独特地纳入了非阴性约束。,我们通过将其外部限制到正值来扩展高斯过程潜在变量模型(GPLVM)[14]。天文光谱的幅度不是本质的物理特性,不应在潜在空间中反映。我们引入了规模不变,并表明它会导致更好的重建。
进行大规模研究以从多个设施中收集大脑MR图像时,在每个站点的成像设备和协议中的差异的影响不容忽视,并且近年来,该域间隙已成为一个重要的问题。在这项研究中,我们提出了一种称为样式编码器对抗域的适应(SE-ADA)的新的低维表示(LDR)施加方法,以实现基于内容的图像检索(CBIR)的大脑MR图像。se-ADA通过将特异性信息与LDR分开,并使用对抗性学习来最大程度地减少域差异,从而减少了域差异。在评估实验中,将SE-ADA与八个公共大脑MR数据集(ADNI1/2/3,OASIS1/2/3/4,ppmi)进行比较的域进行了比较,SE-ADA有效地删除了域信息,同时保留了原始大脑结构的关键方面并证明了最高疾病搜索的准确性。
我们介绍了Chaossecops,这是一个新颖的概念,将混乱工程与DevSecops结合在一起,特别着重于主动测试和提高秘密管理系统的弹性。通过使用AWS服务(秘密经理,IAM,EKS,ECR)和Common DevOps工具(Jenkins,Docker,Terraform,Chaos Toolkit,Sysdig/Falco)的详细,现实世界实施方案,我们证明了这种方法的实际应用,并且对这种方法进行了实践应用。电子商务平台案例研究展示了不变的秘密管理如何改善安全姿势,提高合规性,更快的市场时间,停机时间的降低以及开发人员的生产率提高。关键指标表明,与秘密相关的事件和更快的部署时间显着减少。该解决方案直接解决了DevOps技术类别中全球技术奖的所有标准,突出了创新,协作,可伸缩性,持续改进,自动化,文化转型,可衡量的结果,技术卓越成果,技术卓越和社区贡献。
经典力学在时间反演下是不变的:它的基本定律不区分过去和未来。观察到的时间箭头是一种宏观现象,它取决于宏观变量的使用以及这些变量定义的熵在过去较低的偶然事实。量子力学也是这样吗?一方面,薛定谔方程是时间反演不变的,量子场论也是如此(直到宇称变换和电荷共轭)。基本物理学是时间反演不变的,时间取向的来源又是宏观和熵的。基本量子现象不带有首选的时间箭头。然而,另一方面,量子理论的形式主义通常以明显的时间取向来定义。在这里,我们解决了物理学和形式主义之间的这种紧张关系。我们研究了量子形式主义的时间取向的原因,并表明这种紧张关系是可以解决的。形式主义的不对称性是由于