摘要。最近对新型的线性变换的几何形状构成了新的兴趣。这激发了对此类不变的研究,以在根系,反射群,谎言组和谎言的背景下进行某种类型的几何转换:Coxeter转换。我们使用高性能计算对所有Coxeter转换进行了所有Coxeter转换的详尽计算,以选择简单根的基础并计算其不变性。此计算代数范式生成一个数据集,然后可以使用来自数据科学的技术(例如智能和无监督的机器学习)进行开采。在本文中,我们关注神经网络分类和主成分分析。由于输出(不变性)是由选择根源的选择以及Coxeter元素中相应反射的置换顺序完全确定的,因此我们期望在映射中进行巨大的退化。这为机器学习提供了完美的设置,实际上,我们看到数据集可以被机器学习以非常高的精度。本文是使用Cli杀性代数在实验数学方面进行的泵送研究,表明此类cli效应代数数据集可以适合机器学习,并阐明了这些新颖的几何学和其他知名几何不变的关系,并引起了分析结果。
b'B'The分数量子厅(FQH)状态是物质拓扑阶段的一些最佳研究的例子。它们的特征是各种拓扑量,例如准粒子电荷,霍尔电导,霍尔的粘度和边缘理论的手性中心电荷,这从根本上是由电子之间的非平凡相关性引起的。在这些状态下相关性的一种特别用途是\ xe2 \ x80 \ x9cguiding Center \ xe2 \ x80 \ x80 \ x9d静态结构因子\ xc2 \ xaf s(k),在长波长的情况下,在平移和In-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-in-nimememementscements中是四分之一的Quartic [k)。FQH接地的一个基本特征是,确定此四分之一术语的第四个等级张量满足所谓的\ xe2 \ x80 \ x9Chaldane绑定\ Xe2 \ x80 \ x80 \ x9d [2,3],较低的结合在长波长度的强度下,构成了hall [4 hall sects of Hall ted the the Hall [4 hall [4 hall]的强度。在旋转不变的情况下,当引导中心静态结构因子和霍尔粘度张量的四分之一项都由每个pa-rameter确定时,界限可以表示为两者之间的简单标量不平等。在物理层面上,可以理解为将QH状态与拓扑琐碎的产物状态区分开的相关性最小的存在,即,前者不能绝热地变形到后者。在FQH上进行了许多工作,涉及一类旋转不变的模型波函数(Laughlin [6],Moore-Read [7],Read-Rezayi [8]),与欧几里得的保形场理论有关,并使Haldane结合饱和[9,10]。这些模型状态是属于某些非常特殊模型的汉密尔tonians的最高密度状态(零能量特征态),并且在理解FQHE方面发挥了关键作用。他们非常特殊的功能之一是,它们是\ xe2 \ x80 \ x9cmaxmaximally手性\ xe2 \ x80 \ x9d,因为它们在圆柱形几何形状中仅包含一个与半融合状态相对于一个cut的圆柱状态的贡献。这是\ xe2 \ x80 \ x9cmaximal手性\ xe2 \ x80 \ x9d的非常强烈的条件:最大性手性的较弱版本是,纠缠谱的低较低部分(或同等地,拓扑模式)仅具有一种chirality的贡献。这个较弱的版本通常会被汉密尔顿人的基础状态所满足,而汉密尔顿人的基础状态却远离模型。在本文中,我们解决了一个问题 - 饱和hal -dane结合需要什么条件?我们在附录B中显示,连续旋转不变性是必需的。之所以如此,是因为角动量的波动有助于O(K \ Xe2 \ X84 \ X93)4的静态结构因子4,但对HALL粘度张量不足。对于旋转不变的系统,先前已显示[11 \ xe2 \ x80 \ x93 13],即\ xce \ xbd \ xbd \ xe2 \ x88 \ x92 = p /(2 np \ xe2 \ xe2 \ x88 \ x92 1)jain状态[14]不满意,不满意n> 1,不满足n> 1,不满意 任何一个。这些FQH状态包含旋转不变的基态上方的Spin-2重力激发的两种手势。特别是一些研究支持了后者[9]。这会导致长波长的静态结构因子的相关性比霍尔粘度的大小所需的更大的相关性。但是,尚不清楚是否需要强大的最大性手性或较弱的版本足以使各向同性FQH状态的结合饱和。我们以数值调查了这个问题,并提供了明确的证据,表明弱的最大手性不足。因此,我们期望只有理想的保形块波形饱和haldane结合。我们使用旋转不变的二维Hamilto-Nians在\ xce \ xbd = 1 / 3,1 / 5和2/5的FQH状态的长波长极限中计算静态结构因子。为此,我们在圆周的无限缸[15]上使用密度矩阵重新归一化组,并通过考虑大的l y /\ xe2 \ x84 \ x93来接近2D-LIMIT。我们计算O(K \ Xe2 \ X84 \ X93)的系数\ XC2 \ Xaf S 4)4项在指南中心静态结构因子的长波长膨胀中,并表明它比Haldane绑定的Haldane by by for Haldane by to haldane by to for for for Haldane to for Haldane to for Haldane to for for for f q QH的Haldane Hamiltonians的FQH地面。我们通过分析围绕模型'
摘要 - 自治车辆(AV)越来越受到黑客的攻击。但是,AVS的系统安全至关重要,因为任何成功的攻击都会导致严重的经济损失,设备损失甚至人类生命的损失。评估新算法的良好安全原则是表明该提案对强大的对手有抵抗力。因此,在这张海报中,我们意识到最糟糕的攻击类型,称为隐形攻击,对转向控制系统,这对于AVS的横向控制很重要。我们提出的隐形攻击的核心是使用模型预测性控制(MPC),状态空间模型(SSM),系统识别(SI)和动态时间扭曲(DTW)允许攻击者准确模拟系统行为,从而允许它们执行不可检测的攻击。
投射气候变化是一个概括问题:我们使用过去,现在和将来的气候中的物理模型推断了最近的过去。当前的气候模型需要在小于模型网格大小的尺度上发生的过程,这是模型投影不确定性的主要来源。最近的机器学习(ML)算法有望改善这种过程表示形式,但往往会推断出不受培训的气候制度。为了获得最佳的物理和统计世界,我们提出了一个框架,称为“气候风险” ML,将气候过程的知识纳入ML算法,并表明它可以在三种不同的大气模型中维持广泛的气候条件和配置范围的高线准确性。我们的结果表明,将物理知识明确地纳入地球系统过程的数据驱动模型中可以提高其在气候制度中的一致性,数据效率和义务。
构建局部表面表示最近在3D视觉中引起了很大的关注,从而使复杂的3D形状成为较简单的局部地理序列。受到2D离散代表学习的进步的启发,最近的方法提出了将3D形状分解为常规网格,每个单元格与从可学习的代码簿中采样的离散代码相关联。不幸的是,现有方法忽略了局部刚性自相似性以及与方向可能变化有关的3D几何形状固有的歧义。因此,此类技术需要非常大的代码手册来限制几何和姿势的所有可能变异性。在这项工作中,我们提出了一种新颖的生成模型,该模型通过将local的几何形状紧密地嵌入旋转和翻译不变的manner中来证明产生质量。此策略允许我们的离散代码代码书通过避免本地和全局冗余来表达更大范围的几何结构。至关重要的是,我们通过仔细的体系结构设计表明,我们的方法可以从本地嵌入中恢复有意义的形状,同时确保全球一致性。进行的实验表明,在相似的设置下,我们的方法优于基线方法。
摘要:已经提出,神经系统具有产生21种动作的能力,因为它重新使用了一些不变的代码。先前的工作已经确定,在不同运动中,动态23的神经种群活动的22个动态是相似的,其中动态23是指人口活动的瞬时空间模式如何变化。在这里,我们测试24神经种群的不变动态是否实际上用于发出25个直接运动的命令。使用脑机界面,该脑机界面将猕猴的26皮层活性转化为神经假体光标的命令,我们发现在不同运动中具有不同的神经活动模式发出了相同的27命令。然而,28这些不同的模式是可以预测的,因为我们发现活动29模式之间的过渡受到跨运动的相同动力的控制。这些不变动态是30个低维的动力学,并且在批判性地与脑机界面保持一致,因此它们预测了31个神经活动的特定组成部分,实际上发出了下一个命令。我们引入了32个最佳反馈控制模型,该模型表明不变动态可以帮助将33个运动反馈转换为命令,从而减少了神经人口需要34控制运动的输入。总的来说,我们的结果表明,不变的动态驱动器命令35可以控制各种动作,并显示如何与不变的36动力学集成反馈以发出可通用的命令。37
摘要 - 在许多现实的设置中都出现了比擦除错误更难纠正的Quantum删除。因此,为量子缺失通道开发量子编码方案是相关的。迄今为止,对于哪些显式量子误差校正代码可以打击量子删除,尚不了解。我们注意到,具有t + 1距离的任何置换量量子代码都可以纠正量子和Qudit设置中任何正整数t的t量子删除。利用在擦除误差下的置换不变量子代码的编码属性时,我们得出了量子缺失下置换量的量子代码的相应编码边界。我们将注意力集中在n个Qubit置换不变的量子代码的特定家族上,我们称之为转移的GNU代码。这项工作的主要结果是它们的编码和解码算法可以在O(n)和O(n 2)中执行。
Jeffrey M. Erickson 上校是位于纽约西点军校的美国军事学院 (USMA) 陆军网络研究所所长。作为主任,Erickson 上校领导着一个 60 人的多学科研究机构,致力于扩大陆军对网络空间领域的了解。他的陆军生涯始于一名装甲军官,之后转入模拟作战职能领域,在过去 15 年中,他一直使用模拟训练从个人到联合和作战指挥级别的人员。他拥有美国军事学院计算机科学学士学位、鲍伊州立大学管理信息系统硕士学位以及艾森豪威尔学院(前身为武装部队工业学院)国家资源战略硕士学位。他的兴趣领域是实时虚拟建设性训练、测试和战争游戏的模拟。