摘要 自适应门控在通过经典循环神经网络 (RNN) 进行时间数据处理中起着关键作用,因为它有助于保留预测未来所需的过去信息,从而提供一种保持时间扭曲变换不变性的机制。本文以量子 RNN (QRNN)(一种具有量子记忆的动态模型)为基础,介绍了一类新型的时间数据处理量子模型,该模型保持了 (经典) 输入输出序列的时间扭曲变换的不变性。该模型称为时间扭曲不变 QRNN (TWI-QRNN),它在 QRNN 中增强了一种量子-经典自适应门控机制,该机制通过经典循环模型选择是否在每个时间步骤中根据输入序列的过去样本应用参数化酉变换。TWI-QRNN 模型类源自第一原理,其成功实现时间扭曲变换的能力已在具有经典或量子动力学的示例上通过实验证明。
摘要:生命最显著的特征之一是它能够处理新事物,即茁壮成长并适应新情况以及环境和内部成分的变化。了解这种能力对于几个领域至关重要:形式和功能的进化、生物医学有效策略的设计以及通过嵌合和生物工程技术创造新的生命形式。在这里,我们回顾了生物体解决各种问题的有启发性的例子,并提出了在任意空间中有效导航作为思考进化过程中认知扩展的不变量。我们认为,我们天生识别陌生伪装下的能动性和智慧的能力远远落后于我们在熟悉的行为环境中检测它的能力。生命的多尺度能力对于自适应功能至关重要,可以增强进化并为自上而下的控制(而不是微观管理)提供策略以应对复杂的疾病和伤害。我们提出了一种以观察者为中心的观点,该观点与规模和实施无关,说明了进化如何利用类似的策略来探索和利用代谢、转录、形态以及最终的 3D 运动空间。通过概括行为的概念,我们获得了关于进化、系统级生物医学干预策略以及生物工程智能构建的新视角。该框架是与高度陌生的实施方式中的智能相关的第一步,这对于人工智能和再生医学的进步以及在越来越多地由合成、生物机器人和混合生物组成的世界中蓬勃发展至关重要。
摘要:生命最显著的特征之一是它能够处理新事物,即茁壮成长并适应新情况以及环境和内部成分的变化。了解这种能力对于几个领域至关重要:形式和功能的进化、生物医学有效策略的设计以及通过嵌合和生物工程技术创造新的生命形式。在这里,我们回顾了生物体解决各种问题的有启发性的例子,并提出了在任意空间中有效导航作为思考进化过程中认知扩展的不变量。我们认为,我们天生识别陌生伪装下的能动性和智慧的能力远远落后于我们在熟悉的行为环境中检测它的能力。生命的多尺度能力对于自适应功能至关重要,可以增强进化并为自上而下的控制(而不是微观管理)提供策略以应对复杂的疾病和伤害。我们提出了一种以观察者为中心的观点,该观点与规模和实施无关,说明了进化如何利用类似的策略来探索和利用代谢、转录、形态以及最终的 3D 运动空间。通过概括行为的概念,我们获得了关于进化、系统级生物医学干预策略以及生物工程智能构建的新视角。该框架是与高度陌生的实施方式中的智能相关的第一步,这对于人工智能和再生医学的进步以及在越来越多地由合成、生物机器人和混合生物组成的世界中蓬勃发展至关重要。
我们提出了一种实现拓扑离散时间量子行走的方案,该方案由单个捕获离子执行一系列自旋相关的翻转位移操作和量子硬币抛掷操作组成。结果表明,当行走发生在相干态空间中时,可以通过测量平均投影声子数来提取体拓扑不变量的信息。有趣的是,我们的离散时间量子行走所具有的特殊手性对称性简化了测量过程。此外,我们通过引入动态无序和退相干证明了此类体拓扑不变量的稳健性。我们的工作提供了一种测量离散时间量子行走中体拓扑特征的简单方法,可以在单个捕获离子系统中通过实验实现。
第一步,将有关角轨道动量绝热不变性的埃伦费斯特推理应用于氢原子中的电子运动。结果表明,从氢原子中考察的轨道角动量可以推导出从量子能级 1 n + 到能级 n 的能量发射时间。发现这个时间恰好等于焦耳-楞次定律规定的电子在能级 1 n + 和 n 之间跃迁的时间间隔。下一步,将输入量子系统的机械参数应用于计算电子跃迁特征时间间隔。这涉及氢原子中的相邻能级以及受恒定磁场作用的电子气中的朗道能级。