本文是对生命评论物理学的第一个20年中发表的最引用的文章之一的后续行动。特定的主题是“蚂蚁菌落优化”,它是解决挑战性优化问题的元疗法。由于自然蚂蚁菌落最短的路径发现行为的灵感,该优化技术构成了一个被称为群智能的较大领域的一部分。在对蚂蚁菌落优化的简短介绍之后,我们首先提供了针对算法发展而不是应用的年代。本文的主要部分介绍了对蚂蚁菌落优化文献的书目计量研究。关于有关出版物的地理起源以及随着时间的推移的研究重点的有趣趋势,可以从提出的图形和数字中学到。
4.2 分别表明,上层温度和气体种类不均匀,并且对于通风不足且上层温度较高的火灾,上层氧气耗尽。对于 HRR 超过 400 kW (<^g > 2) 的火灾,一氧化碳浓度高达 3.5
如果燃料灰床的某些部分变得太薄或太厚,炉排下燃烧空气流分布就会变得不均匀。这种情况会导致床厚区域出现结块,薄区域出现气孔,这两种情况都会大大增加颗粒物夹带并降低锅炉效率。由于燃烧空气流不均匀,炉排下燃烧空气分布不均也会导致床固体夹带,从而导致燃烧炉排部分上的所有固体都被去除。炉排下燃烧空气夹带的燃料灰床固体(煤、炭和/或灰分)除了降低燃烧效率外,还会降低热传递并通过侵蚀损坏其他炉子表面。燃料灰床损失所暴露的燃烧炉排表面也会因过度加热而受到损坏。
高次谐波桨距长期以来一直是减少振动转子载荷和由此产生的机身振动的一种有吸引力但尚未开发的方法。这个概念很简单。大多数直升机振动源于转子叶片在绕方位旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向的方向不断变化以及转子下方的不规则涡流尾流造成的,由此产生的叶片攻角随方位的变化包含转子轴速度的每个谐波,但只有某些谐波会导致振动载荷传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处结合时完全相互抵消。高次谐波叶片螺距,叠加在传统的零次谐波和每转一次的叶片螺距控制上,是一种选择性控制攻角谐波的方法~>。•会产生振动,
高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,
图 1:聚合物复合材料的分类。该图显示了可用于聚合物复合材料的不同类型的基质和增强材料。作为典型的说明性示例,我们在图中进一步解释了纤维增强复合材料、结构复合材料和生物复合材料的分类。颗粒复合材料可以具有嵌入基质中的不同均匀和不均匀形状的颗粒。
� 提高强度、硬度和耐磨性(整体硬化、表面硬化) � 提高延展性和柔软度(回火、再结晶退火) � 提高韧性(回火、再结晶退火) � 获得细小晶粒(再结晶退火、完全退火、正火) � 消除由冷加工、铸造和焊接过程中高温不均匀冷却引起的差异变形引起的内部应力(消除应力退火)
发现,在负载下测量的包装中的瞬时不平衡会随着平行字符串的添加以及较宽的母线电阻分布而增加。这可能会驱动包装细胞不均匀降解。此外,母线中的开路断层似乎会导致永久性失衡和包装容量的严重缺乏。
不均匀对比度评分 (ICR) 优化 WM 段内的全局标准偏差,并通过最小问题对比度进行缩放;从 A+(质量优秀到 F 不可接受/质量失败)评分 均方根分辨率 (RES) 体素大小的均方根值;从 A+(质量优秀到 F 不可接受/质量失败)评分 加权平均图像质量评分 (IQR)
本研究致力于应用利用场相位特性的地电控制补偿法来检测和定位地球动力学过程。与通常用于分析观测结果的电磁场异常分量的振幅参数相比,地电信号的相位配准法具有较高的抗噪性。开发了一种使用场相位特性来解释监测数据和相关地球动力学过程定位问题的形式化方法。在该方法的框架内,提出了通过加权均方解释误差和包含有关地电剖面先验信息的正则函数的最小和来确定剖面参数。为了检查球形溶洞的定位可能性,模拟了沿安装剖面移动球心时场电位的振幅和相位异常分量以及非均匀定位的标准误差。模拟表明,与不均匀位置具有良好的潜在区分度,在不均匀定位问题中,通过结合使用幅度和相位场分量可以获得最高的定位精度。