与城市化的城市化相比,城市化的广泛认可的城市化区域以及包含城市空间的明确定义的物体与其腹地相比。然而,城市化的多维复杂性挑战了这些方法在增加以城市发展,不均匀的发展,生活方式,不平等,商品化等方面标记的社会问题的背景下,需要以创新的经验证据为基于创新的科学答案。在这里,我们分析了基于人群的和基于土地覆盖的城市化的分类理解,研究了它们的起源和主要缺点。我们的分析对城市化的空间复杂性进行了广泛的描述,重点是对城市边界的有问题的空间界定;城市化发生在偏远的野生区域;以及缺少的第三个空间维度。我们根据最近的科学发展讨论这些缺点,提供了为什么需要更改分类方法以及如何改变的原因。我们提出了一个连续的城市化指标,该指标基于人为材料的积累,即物理,而不是空间或人口特征。我们的建议允许对社会生态系统的空间组织进行分析,跨地区和时代进行比较研究,告知全球可通用的城市化过程模式,并给予物质机构来解决可持续城市发展的主张。
以空间不均匀的光学领域为特征的结构化光在光学通信,传感,显微镜,操纵和量子信息中发现了丰富的应用。虽然已经在线性光学元件中对结构化光的产生进行了广泛的研究,但非线性光学过程,尤其是在二维(2D)材料中,是一种新兴的替代方案,用于在较短的波长下生成结构化光。在这项工作中,我们从理论上证明,可以在第二谐波频率下使用2D基于基于材料的跨质面体,这些频率可以在径向和方位角极化的光束和涡旋束和涡流束上产生,并在第二谐波频率下产生相同的过渡金属二石化二核二核元素元素。对各向异性非线性元原子的翻译和方向的操纵表现出三倍旋转对称的晶体结构会诱导强的非线性自旋轨道耦合,从而可以同时控制第二次Harmonic Generation的空间相位和极化。提出的非线性过渡金属二分裂元化元素跨表面有望在非线性的结构化光的片上整合。
本文提出了新的实验和数值方法,以表征环氧聚合物底物的转移过量。我们研究了陶瓷面板上的多芯片模块以及封装为模具阵列包装(MAP)的印刷电路板上。实验表明,在过度过度过程中的聚合物流量显着取决于霉菌的高度:虽然标准的地图型霉菌腔均匀地填充,并且在大多数情况下,在大多数情况下,低空腔高度(<500 l m)可以导致前部的流量集中在几个流动路径上(forling parsssssssssssssssssssssspersifecifecte)。我们开发了一种数字方法来描述这种不均匀的聚合物流。流动前填充的原因似乎是聚合物粘度的局部变化,可在不同的流路径上强制颈部。指法会导致空气陷阱的形成和过多的电线。我们还开发了新的实验方法来测量腔内的压力分布:我们的传感器基于Fujufilm的市售,具有压力敏感的薄膜,并且在最高180的温度下运行。2010 Elsevier Ltd.保留所有权利。
面部识别技术(FRT)的快速发展已在现代监视的安全技术(SOSS)系统(例如CCTV)中使用,越来越广泛。FRT是基于人工智能的技术,是这些系统的力量乘数,为部署它的组织提供了安全,效率和商业智能的增长。同时,这是一项有争议的技术,但这是不均匀的。公众倾向于接受该技术已成为通过机场通过海关的过程的一部分,但是零售商的使用却引发了频繁的反弹。这些争议的频率表明,安全顾问和其他负责向组织提供有关安全系统适用性的建议的从业者未能将潜在的FRT部署的“公共可接受性”纳入其建议中。现有对FRT公众可接受性的研究表明,FRT的某些部署比其他部署更公开接受。这是为了(i)确定可接受性的部署模式,并(ii)开发一个模型来映射基于“奖励临时”与“可感知的风险”取舍的潜在部署的可接受性。该模型可以协助FRT供应链中的参与者,以在特定部署方案中与面部识别技术的适当性做出更明智的选择。
我们在不同的坐标系中彻底研究了共同研究的Schwarzschild空间,以寻求宇宙黑洞的物理合理模型。我们假设一个符号因子仅取决于时间坐标,并且时空在渐近上是弗里德曼·莱玛·罗马·罗伯逊 - 罗伯逊 - 罗伯逊 - 步行者宇宙的宇宙,由完美的流体遵循的线性方程式p =wρ,w> - 1/3。< / div> < / div。在这类的空间中,根据各向同性坐标构建的McClure-Dyer时空,根据标准的Schwarzschild坐标构建的Thakurta时空是相同的,并且没有描述宇宙黑洞。相比之下,分别根据Kerr-Schild和Painlev´e-Gullstrand坐标构建的Sultana-Dyer和Culetu类别的空间类别,描述了宇宙学黑洞。在苏尔塔那迪尔案例中,相应的物质场范围可以解释为均匀的完美流体和不均匀的无效无效的组合,这与Sultana和Dyer的解释不同。在Culetu情况下,该物质领域可以解释为均匀的完美液体和不基因的各向异性流体的组合。在两种情况下,总能量量张量违反了所有标准能量条件,以径向坐标的有限值在后期。因此,-1 / 3
成功实施了在串联perovskite光伏设备的顶部细胞中的成功实施,但受到卤化物种族隔离现象的阻碍,[27-29]遭受了混合的碘化碘 - 溴组成,用于实现宽带式的(> 1.7 ev [> 1.7 ev [22,23,23])。太阳光谱的高能部分。在带有袋中的照明下[27]或电荷载体注入,[30-32]这些伴侣经历了一个混合过程,从而形成了富含碘化物和溴化物的富相的局部区域。[33–36]去除外部刺激导致从隔离中恢复。[27,37–39]尽管这种可逆的相分离仅影响钙矿体积的少数族裔,[34,40]在空间上,空间不均匀的bandgap严重破坏了混合壁孔孔孔的适用性,不仅可以通过限制了频带的范围,而不仅会限制频带的范围,而且还限制了对频段的效果[41] [41] 41] [41] [41] [41–43]和重组,[44]并导致电压损耗。[40,45]因此,正如最近的几篇评论文章中列出的那样,已经大量的研究注意力用于理解这一案例以防止这种情况。[46–50]
摘要:众所周知,在现代微电子和纳米电子学中,薄膜结构被广泛用作栅极电介质、钝化层、膜等。本文研究了单晶硅晶片上互连脉冲加热过程中氧化硅薄子层中形成裂纹的问题。本文旨在研究表面热冲击源对薄膜裂纹形成的影响,并详细研究了 SO2 薄膜中裂纹形成的各个方面。在硅衬底-氧化硅子层-铝膜 (Si-SiO 2 -Al) 多层结构上对所做的估计进行了实验验证。作为衬底,使用了磷掺杂的硅单晶晶片,取向为 (111) 方向,电阻率在 = 0.1 Ω . сm 范围内。作者研究了表面金属化层加热的硅晶片(Al-Si 系统)和氧化硅晶片(Al-SiO2 系统)的温度场,既有点热源的情况,也有长矩形金属化路径的情况(假设轨道长度明显超过其宽度)。计算结果表明,金属化路径(宽度 75 μm)横向的温度分布是不均匀的。结果还表明,与 SiO2 膜相比,硅中出现的机械应力水平不足以在热冲击源附近形成裂纹。这是因为硅的抗拉强度高于氧化物。
实现统一的单眼3D对象检测,包括室内和室外场景,在机器人导航等应用中非常重要。然而,涉及各种数据方案来训练模型引起了挑战,因为它们的特性显着不同,例如,二 - 几何特性和异质域分离。为了应对这些挑战,我们根据鸟类的视图(BEV)检测范式建立了一个检测器,在该检测范式中,当采用多个数据方案以训练检测器时,明确的特征投影有利于对几何学学习模棱两可。然后,我们将经典的BEV检测体系结构分为两个阶段,并提出了不均匀的BEV网格设计,以处理由上述Challenges引起的收敛不稳定。此外,我们开发了稀疏的BEV功能策略,以降低计算成本和处理异质域的统一操作方法。将这些技术结合起来,得出了一个统一的检测器Unimode,它超过了富有挑战性的Omni3D数据集(一个大规模的数据集(一个室内和室外场景))的先前最先进的AP 3D,揭示了Bev bev tor tor tor tor tor tor tor unified 3D对象的第一个成功概括。
对于具有高压轨迹的微电子设备,可在真空环境中起作用,重要的是要知道真正的损坏电压对压力的影响以避免发生故障。Paschen定律在压力和距离变化时是众所周知的崩溃电压行为方程。它的常见数学表达[1]是在两个平行导电板的均匀字段假设下写的。最近有一些作品,其中一些特殊导体配置的不均匀的电晶体以及在真空中的PCB痕迹考虑的,压力高达10 -1 mbar [2]。也有关于均匀场,非常低的距离(10 UM及更近)和低真空的帕申曲线行为异常的报告[3,4]。在这里,我们介绍了对一种不均匀领域的paschen效应的研究,这是针对一种常见的PCB痕量构造的,距离距离为100 um,低真空度最高为10 -4 TORR。在本文的第2节中,我们提供了简化的理论估计,该理论估计使用Townsend标准对最小崩溃电压。在第3节中,描述了测量压力的崩溃电压依赖性的实验设置,并在第4节中提出了真空相机中PCB迹线的实验研究结果。
流动微生物的密度在减轻和监测动量,热和溶质边界层时表现出动态特征。看到这一点,我们检查了卡森纳米流体悬浮液的流动特征,这是由于片张的拉伸而引起的。研究了辐射,不均匀的散热器或源,热经液和布朗运动的影响。流是层流和时间依赖的。检查热量和传质特征的关节影响。速度滑移边界条件被认为是研究流量特征。建模的方程式是高度耦合和非线性的。因此,对于此模型是不可能的分析解决方案。因此,我们提出了一个数值解决方案。合适的相似性被思考将原始PDE的变态变成ODE,然后通过利用基于Runge-Kutta的射击技术来解决。借助图详细讨论了各种参数在流场上的影响。同时阐明牛顿和非牛顿液。被描述,嗜热参数的增强导致热量增强,从而降低了浓度。此外,特征是生物对流刘易斯的数量和小伙子的数量降低了动感微生物的密度。关键字:MHD,热量和传质,生物概念,卡森流体,布朗运动。