人工智能如何改变我们做出购买决策的方式?这对商标法意味着什么?商标法的核心在于如何购买商品和服务,而由于人工智能正在影响购买过程,因此从定义上讲它也影响着商标法。人工智能通过两种方式影响购买过程:(a)消费者可获得的品牌信息和(b)谁来做出购买决策。亚马逊的 Alexa 等人工智能个人零售助理有可能成为品牌向消费者提供的“守门人”,控制向消费者提供哪些品牌信息,并以纯粹的形式购买品牌产品,在人工智能所谓的“自动执行模型”中几乎不需要或根本不需要人为干预,从而有效地将传统的购物体验从“先购物后发货”模式颠覆为“先发货后购物”模式。商标法的许多关键方面都涉及人性的弱点。如果您考虑商标法和实践中的一些“流行词”,例如“混淆”、“不完全记忆”、“联想”和“商标混淆”,这些概念都围绕着人类的弱点。然而,人工智能有可能从购买过程中消除“人性”和“弱点”。人工智能应用程序可以通过“给我买个灯泡”等一般命令来购买产品。人类消费者与人工智能应用程序购买的灯泡品牌没有任何互动。人工智能应用程序会混淆吗?它会混淆商标吗?人工智能应用程序甚至会通过传统的听觉、语音和概念比较商标的方式来评估产品购买,这就是所谓的人工智能黑箱问题吗?人工智能应用程序经常受到个人消费者过去购买决策的影响,而人工智能应用程序做出购买决定或建议的原因有时可能难以理解。在这些情况下,知识产权侵权责任问题也引起了重要的问题。然而,即使人工智能应用程序不做出购买决策,它仍然会影响消费者在做出购买决策时可用的品牌信息。例如,亚马逊 Alexa 平均只向消费者推荐三种产品。它控制着向消费者推荐什么品牌产品,它而不是人类消费者掌握着所有的品牌信息。然而,人工智能对购买过程的影响必须放在历史背景中来看待。人工智能的兴起是新的,但并非史无前例。现代商标法诞生于十九世纪,并发展到现代。然而,在此期间,购买过程并非一成不变,而是发生了变化。我们只需看看从传统的十九世纪“店主”购买产品模式到二十世纪二十年代超市发明的变化,从互联网和社交媒体的兴起到人工智能的兴起。商标法已经适应并发生了变化,实际上可以说是适应性最强的知识产权法形式。例如,关于人工智能应用程序的责任问题,我们已经可以从关键词广告的案例中得到指导,例如谷歌法国,它是随着互联网购物的兴起而发展起来的。如果购买过程中的“参与者”如人工智能应用程序在购买决策/过程中扮演更被动的角色,则人工智能应用程序提供商不太可能被追究责任,如果人工智能应用程序在购买决策中扮演更积极的角色,并且可以说人工智能提供商在购买决策中强烈影响消费者,则更有可能发现责任。商标法已经适应了购买过程的变化,并且它将再次适应。HGF 合伙人兼特许商标律师 Lee Curtis
背景:急性中枢神经系统 (CNS) 损伤(包括中风、运动不完全性脊髓损伤或创伤性脑损伤)患者通常会经历持久的运动障碍,表现为步行速度和特定持续时间内行走距离(计时距离)的下降。本临床实践指南的目标是描述各种干预措施对改善这些特定诊断后 6 个月以上的步行患者步行速度和计时距离的相对有效性。方法:在 4 个数据库中对 1995 年至 2016 年期间发表的针对这些特定患者群体的随机对照临床试验的文献进行系统回顾,研究时间至少在受伤后 6 个月,并具有步行速度和计时距离的特定结果。对于所有研究,训练干预的具体参数(包括频率、强度、时间和类型)都尽可能详细。建议是根据证据的强度以及提供特定训练模式的潜在危害、风险或成本确定的,特别是当可能有另一种干预措施可用并能提供更大益处时。结果:有力的证据表明,临床医生应在中枢神经系统急性损伤发生后 6 个月以上为能走动的个体提供中高强度的步行训练或基于虚拟现实的训练,以提高步行速度或距离。相反,弱证据表明,中高强度的力量训练、循环(即组合)训练或自行车训练以及基于虚拟现实的平衡训练可以提高这些患者群体的步行速度和距离。最后,有力的证据表明,不应在中枢神经系统急性损伤发生后 6 个月以上为能走动的个体进行体重支撑的跑步机训练、机器人辅助训练或不使用虚拟现实的坐/站平衡训练来提高步行速度或距离。
摘要:本文介绍了一种在并非所有状态都可用的情况下针对飞机跟踪问题的控制器设计流程。在研究中,采用了非线性运输飞机仿真模型,并通过最大似然原理和扩展卡尔曼滤波器对其进行了识别。在并非所有状态都可测量的情况下,所获得的数学模型用于设计具有最佳加权矩阵的线性二次调节器 (LQR)。对具有 LQR 控制器跟踪能力的非线性飞机仿真模型进行了多次实验,实验中噪声水平各不相同。结果表明,所设计的控制器具有鲁棒性,可实现精确的轨迹跟踪。研究发现,在理想的大气条件下,即使对于未测量的变量,跟踪误差也很小。在有风的情况下,跟踪误差与风速成正比,对于小扰动和中等扰动而言是可以接受的。当实验中存在湍流时,会发生与湍流强度成正比的状态变量振荡,对于小扰动和中等扰动而言是可以接受的。
摘要:本文介绍了一种在并非所有状态都可用的情况下针对飞机跟踪问题的控制器设计流程。在研究中,采用了非线性运输飞机仿真模型,并通过最大似然原理和扩展卡尔曼滤波器对其进行了识别。在并非所有状态都可测量的情况下,所获得的数学模型用于设计具有最佳加权矩阵的线性二次调节器 (LQR)。对具有 LQR 控制器跟踪能力的非线性飞机仿真模型进行了多次实验,实验中噪声水平各不相同。结果表明,所设计的控制器具有鲁棒性,可实现精确的轨迹跟踪。研究发现,在理想的大气条件下,即使对于未测量的变量,跟踪误差也很小。在有风的情况下,跟踪误差与风速成正比,对于小扰动和中等扰动而言是可以接受的。当实验中存在湍流时,会发生与湍流强度成正比的状态变量振荡,对于小扰动和中等扰动而言是可以接受的。
摘要:本文介绍了一种在并非所有状态都可用的情况下针对飞机跟踪问题的控制器设计流程。在研究中,采用了非线性运输飞机仿真模型,并通过最大似然原理和扩展卡尔曼滤波器对其进行了识别。在并非所有状态都可测量的情况下,所获得的数学模型用于设计具有最佳加权矩阵的线性二次调节器 (LQR)。对具有 LQR 控制器跟踪能力的非线性飞机仿真模型进行了多次实验,实验中噪声水平各不相同。结果表明,所设计的控制器具有鲁棒性,可实现精确的轨迹跟踪。研究发现,在理想的大气条件下,即使对于未测量的变量,跟踪误差也很小。在有风的情况下,跟踪误差与风速成正比,对于小扰动和中等扰动而言是可以接受的。当实验中存在湍流时,会发生与湍流强度成正比的状态变量振荡,对于小扰动和中等扰动而言是可以接受的。
摘要:本文介绍了一种在并非所有状态都可用的情况下针对飞机跟踪问题的控制器设计流程。在研究中,采用了非线性运输飞机仿真模型,并通过最大似然原理和扩展卡尔曼滤波器对其进行了识别。在并非所有状态都可测量的情况下,所获得的数学模型用于设计具有最佳加权矩阵的线性二次调节器 (LQR)。对具有 LQR 控制器跟踪能力的非线性飞机仿真模型进行了多次实验,实验中噪声水平各不相同。结果表明,所设计的控制器具有鲁棒性,可实现精确的轨迹跟踪。研究发现,在理想的大气条件下,即使对于未测量的变量,跟踪误差也很小。在有风的情况下,跟踪误差与风速成正比,对于小扰动和中等扰动而言是可以接受的。当实验中存在湍流时,会发生与湍流强度成正比的状态变量振荡,对于小扰动和中等扰动而言是可以接受的。
摘要:本文介绍了一种当并非所有状态都可用时,针对飞机跟踪问题的控制器设计流程。在研究中,采用了非线性运输飞机仿真模型,并通过最大似然原理和扩展卡尔曼滤波器对其进行了识别。在并非所有状态都可测量的情况下,所获得的数学模型用于设计具有最佳加权矩阵的线性二次调节器 (LQR)。对具有 LQR 控制器跟踪能力的非线性飞机仿真模型进行了多次实验,实验中噪声水平各不相同。结果表明,所设计的控制器具有鲁棒性,可实现精确的轨迹跟踪。研究发现,在理想的大气条件下,即使对于未测量的变量,跟踪误差也很小。在有风的情况下,跟踪误差与风速成正比,对于小扰动和中等扰动而言是可以接受的。当实验中存在湍流时,会发生与湍流强度成正比的状态变量振荡,对于小扰动和中等扰动而言是可以接受的。
摘要目的:临床前研究表明,伊马替尼通过抑制酪氨酸激酶活性在胶质母细胞瘤中具有单药活性,并且可能提高放射疗法的功效。因此,我们试图对新诊断和复发性胶质母细胞瘤的患者进行投资临床疗效,并结合放射疗法。方法:我们进行了一项非随机,2臂,开放式的II期试验,其中包括18岁或以上的患者,其ECOG性能状态为0-2,该状态为0-2,该状态是新近诊断(ARM A)具有可测量的肿瘤(即不完整的切除术或活检后),或者在诊断为gloioblblastsom症状后(不完整的切除或活检后)。手臂A的患者接受了600 mg/天的伊马替尼与降压放射疗法(每分分数为2.5 gy,
规模经济和不完全竞争如今被视为国际贸易新理论的一部分,与传统的国际贸易理论截然不同。毫无疑问,对规模经济和不完全竞争的考虑拓宽了解释二战后贸易发展的理论方法范围。对世界贸易中规模经济和不完全竞争的考虑有助于我们理解非常相似的国家(即拥有相似禀赋或技术的国家)可以进行贸易。它表明一个国家如何既是同一种商品的出口国又是进口国。它为贸易提供了一种替代比较优势理论的解释。从规模经济和不完全竞争的考虑中产生的产业内贸易可以解释战后时期的经济趋同和经济分化。