低血压的特征是面部表达降低,是帕金森氏病(PD)的基本特征。但是,与PD中的肢体不对称不同,面部不对称性的探索较少。在这里,我们使用人工智能(AI)和图像处理技术探讨了PD中可能的细微半型症。在从102名PD受试者和97个健康对照组(HCS)的视频预处理视频预处理视频后,计算了每个框架跨面部标志的不对称指数值。动态特征被提取并用于机器学习模型中,以区分PD和HC,达到91.4%的精度。PD受试者表现出更大的面部不对称性,尤其是在眉毛周围(P = 0.01)和嘴巴(P = 0.04),并且患有不对称的肢体帕金森氏症患者在受影响较大的一侧表现出较小的面部迁移率(P = 0.001)。这些发现支持PD中面部表达不对称性的存在,尤其是在幸福表达期间,并提出了其作为临床数字生物标志物的潜力。
增加土壤有机碳(SOC)赋予土壤健康,生物多样性,基础碳固执并改善土地退化的益处。一个建议是增加SOC,以使SOC与粘土比(SOC/粘土)超过1/13,但仅基于粘土的SOC水平正常化就会产生误导性的土壤结构的迹象,并有可能存储额外的碳。在Poeplau&Don(2023)的工作基础上为针对预测的SOC进行了基准测试,我们提出了一个替代指标:观察到的与“典型” SOC(O/T SOC)之间的比率用于泛欧应用。在这里,“典型” SOC是不同pedo气候区域中的平均集中度,PCZ(与现有的SOC指标不同,在欧洲融合了土地覆盖物和气候以及土壤质地),由矿物质(<20%有机物)表层(<20%的有机物)表层(0-20 cm)确定,在2009年至2018年,在欧洲的Lucas,欧洲最大的土壤监控计划(lucas)的lucas Monitor Monitorsing(n = n55)。回归树建模得出的12个PCZ,典型的SOC值范围为5.99 - 39.65 g kg -1。与SOC/粘土等级进行比较的新索引类是从每个PCZ的SO/T SOC分布的四分位数中建立的;这些被称为:“低”(低于25%),“中级”(第25%和50个百分点),“高”(在第50%和第75个百分位数之间)和“非常高”(高于第75个百分位数)。与SOC/粘土相比,O/T SOC对粘土含量,土地覆盖和气候的敏感性较小,地理上偏斜的偏差,并且更好地反映了土壤孔隙率和SOC库存的差异,支持2个EU土壤健康任务目标(巩固SOC库存;改善土壤
情绪障碍,例如抑郁症(DD)和双相情感障碍(BD)疾病会影响全球数百万人(Dilsaver,2011; Greenberg et al。,2021; Kieling等,2024)。了解这些疾病的神经生物学相关性可能有助于改善临床结果。在情绪障碍个体中受影响的结构之一是侧心脑室(Abé等,2023; Gray等,2020; Hibar等,2016,2018; Ho等,2022; Okada等,2023; Schmaal等,2016)。外侧心室是大型C形结构,可将其投射到额叶,颞叶和枕叶,并负责脑脊液(CSF)生产(Scelsi等,2020)。心室的大小与脉络丛的大小正相关(Murck等,2024),该大小可产生CSF,并通过控制CSF和CSF之间的分子交换来维持CNS稳态的维持(Thompson等人(Thompson等)(Thompson等,20222年)。
极端的厄尔尼诺事件产生了巨大的影响,并促成了厄尔尼诺南部振荡(ENSO)温暖/冷相不对称。目前尚无对海洋和大气非线性对这些不对称性的重要性的重要性的共识。在这里,我们使用大气和海洋的一般循环模型,可以很好地再现ENSO不对称的方式来量化大气中的非线性贡献。使用集合大气实验分离了风应力对海面温度(SST)异常的线性和非线性成分,并用于迫使海洋实验。风应力-SST非线性由对SST的深度大气对流响应主导。这种风压力非线性占极端厄尔尼诺事件的峰值幅度的约40%,〜55%的东部太平洋变暖的55%,直到第二个夏天。出现这种巨大的贡献是因为非线性始终驱动赤道西风异常,而在秋季和冬季,西太平洋的东太平洋异常效率较小,使较大的线性成分的效率降低了。总体而言,风压力非线性完全解释了东太平洋正偏度。我们的发现强调了大气非线性在塑造极端厄尔尼诺事件以及更普遍的ENSO不对称性中的关键作用。
细胞的边界是由生物膜形成的,即定义细胞内部和外部的屏障。这些障碍可以防止细胞内部产生的分子泄漏出来,并从扩散中散开分子;然而,它们还包含允许细胞采用特定分子并去除不需要的传输系统。此类运输系统授予膜选择性渗透性的重要特性。膜是动态结构,其中蛋白质漂浮在脂质的海中。膜的脂质成分形成了通透性的屏障,蛋白质成分充当泵和通道的传输系统,可将选定的分子进入和流出细胞。生物膜形成不对称结构,并且像具有流动性一样是流体,即具有各种细胞分子的易位酶。生物膜的不对称性可以部分归因于膜内蛋白质的不规则分布。生物膜的脂质双层由外部小叶和内部小叶组成,它们分布在两个表面之间,以在外表面和内表面之间形成不对称性。这个不对称的组织对于细胞功能(例如细胞信号传导)很重要。生物膜的不对称性反映了膜的两个传单的不同功能。如磷脂双层的流体膜模型所示,膜的外部和内部小叶在其组成中是不对称的。膜流动性是指
图1半球不对称。 具有明显不对称性的皮质区域以绿色表示。 使用CAT12工具箱(Gaser等,2022)将Desikan - Killiany Atlas(Desikan等,2006)定义的区域投射到FSAGERAGE模板的中央表面上。 向右不对称,在右半球,左半球向左不对称。 使用0.05的阈值对所有有意义的不对称性进行了FDR校正(Benjamini&Yekutieli,2001; Hochberg&Benjamini,1990)。图1半球不对称。具有明显不对称性的皮质区域以绿色表示。使用CAT12工具箱(Gaser等,2022)将Desikan - Killiany Atlas(Desikan等,2006)定义的区域投射到FSAGERAGE模板的中央表面上。向右不对称,在右半球,左半球向左不对称。使用0.05的阈值对所有有意义的不对称性进行了FDR校正(Benjamini&Yekutieli,2001; Hochberg&Benjamini,1990)。
摘要。这项工作研究了大脑两个半球的脑电图(EEG)节奏的主要频率的不对称性。研究了三个年龄段:16-20、21-35和35 - 60年。对主要频率的研究是在一般组中进行的,并在男性和女性中分别进行。学生,更多的教育学生和大学工作人员被招募为学科。使用八个单极铅中的神经元1脑光谱仪研究了脑电图的主要频率。根据国际“ 10-20%”系统,将电极应用于头皮。受试者的脑电图闭着眼睛记录了一个清醒状态。研究了五种EEG节奏的主要频率:Alpha,beta1,beta2,Theta和Delta Rhythms。可以发现,在一般组的不同年龄时期,单个脑电图中存在不对称性。另外,在分别研究男性和女性时,在不同年龄时期内观察到主要频率的不对称性。我们的数据表明16至60岁的人类脑半球的电活动可能存在不对称性。
选定的细胞质过程的生理学。 细胞质和细胞膜的结构和功能。 。 膜封闭室的生理学。 选定的胞质过程的生理学。 核糖体,polisomes。 内鼠和胞吐途径。 细胞与外细胞基质之间的相互作用。 细胞骨架。 细胞膜生理学。 脂质的结构及其在细胞和细胞外基质中的功能。 脂质筏。 小洞。 质膜的不对称性。 细胞运输。 葡萄糖转运蛋白。 ABC转运蛋白和MDR现象。选定的细胞质过程的生理学。细胞质和细胞膜的结构和功能。。膜封闭室的生理学。 选定的胞质过程的生理学。 核糖体,polisomes。 内鼠和胞吐途径。 细胞与外细胞基质之间的相互作用。 细胞骨架。 细胞膜生理学。 脂质的结构及其在细胞和细胞外基质中的功能。 脂质筏。 小洞。 质膜的不对称性。 细胞运输。 葡萄糖转运蛋白。 ABC转运蛋白和MDR现象。膜封闭室的生理学。选定的胞质过程的生理学。 核糖体,polisomes。 内鼠和胞吐途径。 细胞与外细胞基质之间的相互作用。 细胞骨架。 细胞膜生理学。 脂质的结构及其在细胞和细胞外基质中的功能。 脂质筏。 小洞。 质膜的不对称性。 细胞运输。 葡萄糖转运蛋白。 ABC转运蛋白和MDR现象。选定的胞质过程的生理学。核糖体,polisomes。内鼠和胞吐途径。细胞与外细胞基质之间的相互作用。细胞骨架。细胞膜生理学。 脂质的结构及其在细胞和细胞外基质中的功能。 脂质筏。 小洞。 质膜的不对称性。 细胞运输。 葡萄糖转运蛋白。 ABC转运蛋白和MDR现象。细胞膜生理学。脂质的结构及其在细胞和细胞外基质中的功能。脂质筏。小洞。质膜的不对称性。细胞运输。葡萄糖转运蛋白。ABC转运蛋白和MDR现象。ABC转运蛋白和MDR现象。
摘要:动力学不对称是描述非平衡化学系统的关键参数:它表明在稳态,非平衡条件下化学反应网络的方向性。到目前为止,仅在具有单个周期的网络中评估了动力学不对称性。在这里,我们使用了合并的理论和数值方法研究了多周期系统中的动力学不对称性。受到最新实验发展的启发,我们选择了一个隔间化的氧化还原控制网络作为模型系统。我们报告了多周期网络动力学不对称性的一般分析表达,并为当前系统指定它,该系统允许预测关键参数如何影响方向性。我们确定隔室化可以实现自主能量棘轮机制,并由系统的热力学决定。动力学模拟证实了分析结果,并说明了扩散,化学和电化学过程之间的相互作用。提出的治疗是一般的,因为相同的程序可用于评估其他多周期网络中的动力学不对称,从而促进了跨域的终极过程的实现。
在国内和外国特殊文献中,有关于精神分裂症的数据,癫痫患者的左侧标志数量增加。具体而言,已证明大脑的功能性间歇性不对称性可调节癫痫病[30-32]中抑郁状态的严重程度,局灶性癫痫中横向化的各种迹象以及更大的左半球易受癫痫生成的脆弱性[33-36]。同时,关于功能性感觉运动不对称性与癫痫中特定的心理病理学符号的谱连接的连接有关的数据仍然没有清晰且统计确认的数据。根据大脑半球之间的相互关系来解释许多临床数据,但它们被各种研究人员含糊不清,因此很难整合文献数据[37-41]。