• 自旋是一个基本量子数 • 铁磁材料包含不成对的电子 • 自旋的排列产生磁性 • 记忆存储在电子自旋中 • 自旋不会像电荷那样“泄漏” • 自旋不受重离子辐照的影响 • 自旋不受累积剂量 (TID) 的影响 • 自旋排列由磁场实现 • 避免基于电荷的设备的磨损机制
羟基自由基 (OH) 是最先形成的。这些是极易反应的碎片或随机分子。它们可以以接近其扩散速度的速度与所有生物分子发生反应。这意味着它们会与路径上的第一个分子发生反应,而且几乎不可能阻止它们这样做。当羟基自由基与蛋白质、脂质(脂肪)或 DNA 发生反应时,它会夺取一个质子和一个电子,然后沉回到水的崇高化学稳定性中。但当然,夺取电子的行为会导致反应物缺少电子。因此,会形成另一个自由基,这次是蛋白质、脂质或 DNA 的一部分。这是所有自由基反应的基本特征——一个自由基会产生另一个自由基,如果这个自由基也具有反应性,那么就会发生链式反应。因此,自由基的基本特征是不成对的电子,而自由基化学的基本特征是链式反应。
R 环是一种非典型的三链核酸结构,包含一段 RNA:DNA 杂合体和一个不成对的单链 DNA 环。R 环具有生理相关性,可作为基因表达、染色质结构、DNA 损伤修复和 DNA 复制的调节剂。然而,非计划和持续的 R 环具有诱变性,可介导复制-转录冲突,如果不加以控制,会导致 DNA 损伤和基因组不稳定。详细的转录组分析表明,85% 的人类基因组(包括重复区域)都具有转录活性。这预示着 R 环管理在基因组的调控和完整性中起着核心作用。预计此功能对占人类基因组 75% 的重复序列具有特别的相关性。在这里,我们回顾了 R 环对着丝粒、端粒、rDNA 阵列、转座因子和三联体重复扩增等重复区域的功能和稳定性的影响,并讨论了它们与相关病理状况的相关性。
最近,由于新的量子混合系统的出现,人们已经有了新的兴趣和实验研究,用于在固体中进行旋转,这需要操纵自旋量子状态1-3,并继续搜索可行的候选者2,4。在这项工作中,我们介绍了低语画廊(WG)模式技术,以研究杂质的顺磁性离子不成对的电子自旋共振,在Di-Electric Crystal Grattice 5-7中具有核超精美偶联。Srlaalo 4(SLA)sin- Gle晶体晶格中杂质顺磁离子的位点对称信息是通过WG多模式ESR光谱获得的(图1、2、3和4),提供了超精细结构拓宽,g因素变量和其他各向异性效应的微妙效果。wg模式光谱具有高度敏感的,与实验结果的多模式性质相结合,提供了某些具有高精度的基本物理量的值。金属配体八面体配合物中的jahn-teller效应通常会诱导电荷耦合,轨道和磁有序,位移,并在确定电子行为8-11时强调结构细节。高精细结构特征的这种高精度调查对于量子状态映射至关重要。未配对的电动旋转力矩揭示了有关旋转的信息 -