详细介绍了使用 APW/LAPW 类型基组以及由局部轨道提供的灵活扩展来实现相对论密度泛函理论 (RDFT) 方程的方法。使用完全相对论方法和 α -U 作为示例,证实了先前发现的 APW/LAPW 基组的高导数局部轨道 (HDLO) 扩展对于提高 DFT 计算精度的重要性。高能局部轨道 (HELO) 对 GW 计算来说必不可少,但在提高 DFT 应用精度方面却效率低得多。结果表明,对于本文考虑的五种材料的电子自由能,采用一种简化的相对论效应方法,即仅考虑它们在 muffin-tin (MT) 球体内部,会产生基本相同的结果(与完全相对论方法相比)。通过比较简化方法对电子自由能的影响和对电子动能的影响,我们得出结论,自由能对我们描述间隙区域的相对论效应的方式的不敏感性与该量的变分性质有关。
电液控制系统的现代应用越来越依赖于系统组件之间的数字通信。向新的数字网络控制系统迈进需要所有组件与同一总线兼容。问题的关键在于数字伺服阀与通用数字网络的完全兼容性。这方面最高水平似乎是 EtherCAT 总线,2011 年用于测试新型飞机空客 350 的飞行控制系统 [1]。这一新概念提出的主要问题是电磁兼容性。这个问题可以借助光通信系统解决。其他问题包括:整个系统的时间响应、相位滞后和衰减。微控制器的扩展温度范围、振动不敏感性和 EMI 兼容性、方向流量控制阀的数字机载电子设备 (OBE) 可以安装在坚固的金属外壳中,并可以在恶劣环境中使用,安装在执行器本身上。这种布置改善了整个系统的响应时间和闭环控制性能。数字控制高响应阀最重要的方面是:灵活性、EMI 敏感性、分布式控制/现场总线集成和
电液控制系统的现代应用越来越依赖于系统组件之间的数字通信。向新的数字网络控制系统迈进需要所有组件与同一总线兼容。问题的关键在于数字伺服阀与通用数字网络的完全兼容性。这方面最高水平似乎是 EtherCAT 总线,2011 年用于测试新型飞机空客 350 的飞行控制系统 [1]。这一新概念提出的主要问题是电磁兼容性。这个问题可以借助光通信系统解决。其他问题包括:整个系统的时间响应、相位滞后和衰减。微控制器的扩展温度范围、振动不敏感性和 EMI 兼容性、方向流量控制阀的数字机载电子设备 (OBE) 可以安装在坚固的金属外壳中,并可以在恶劣环境中使用,安装在执行器本身上。这种布置改善了整个系统的响应时间和闭环控制性能。数字控制高响应阀最重要的方面是:灵活性、EMI 敏感性、分布式控制/现场总线集成和
卤化铅钙钛矿纳米晶体(LHP NC)具有诸多优良特性,包括宽范围的带隙可调性、可忽略的电子-声子耦合1、大的吸收截面2和窄的发射线宽,此外还具有溶液加工性、低成本合成和与其他现有器件组件的兼容性3,4,是潜在光电应用的有前途的材料,例如发光显示器、激光器和用于大面积可印刷光收集装置的纳米晶体墨水。5 – 10然而,尽管它们具有高量子产率(QY)和表面不敏感性,但基于溶液加工钙钛矿的第一个发光二极管(LED)的外部量子效率却不到 0.2%。 11 需要持续努力了解电子空穴复合途径和选择性改进辐射途径,才能将性能提高到约 15%。12 这主要是通过解决诸如增加高移动电荷的限制、配体交换和配体密度控制、表面缺陷钝化、掺杂和抑制俄歇非辐射复合等问题来实现的。13 – 17 然而,对
hzμm-3(带有自旋型耦合系数,代表主要的系统不确定性)。我们在具有低应变梯度的单晶散装钻石中使用应变敏感的自旋态干涉仪(N- V)颜色中心。这种量子干涉量学技术对磁场对电子和核自旋浴的不均匀性产生了不敏感性,从而实现了长时间的N- V – Angelement Electemple-Electemple-Electemple-Electement Electem-Election旋转时间和增强的应变敏感性,并增强了该技术的潜在应用,并拓宽了相同的技术的潜在应用。我们在共聚焦扫描激光显微镜上首先证明了应变敏感的测量方案,从而提供了敏感性的定量测量以及三维应变图;第二位于宽阔的成像量子钻石显微镜上。我们的应变 - 显微镜技术可以快速,敏感的钻石材料工程和纳米化表征;以及基于钻石的菌株感测所应用的,例如在钻石砧细胞或嵌入式钻石应力传感器中,或内部通过粒子诱导的核后坐力引起的晶体损伤。
遗传因素在确定人身高方面起着至关重要的作用。矮小的身材通常会影响多个家庭成员,因此,家族性矮小的身材(FSS)代表了生长障碍的显着比例。传统上,FSS被认为是代表特发性短身材的子类别(ISS)的良性多基因条件。然而,遗传研究的进步表明,FSS也可以是单基因的,以常染色体显性方式遗传,并且可能是由不同的机制引起的,包括原发性板障碍,生长激素的发音/不敏感性或通过基本内细胞内途径的破坏。这些发现强调了较远的矮个地位形式的更广泛的表型光谱,这可能与ISS表现出轻度的表现。鉴于重叠的特征和在没有基因检测的情况下与单基因FSS区分多基因的难度,一些研究人员将其重新定义为描述性术语,该术语涵盖了任何家族性地位,无论其基本原因如何。这种转变强调了诊断和管理家庭内部矮小的身材的复杂性,反映了影响人类成长的各种遗传景观。
癫痫是由脑部神经元异常排出引起的运动,意识和神经的异常功能疾病。EEG目前是癫痫研究过程中非常重要的工具。 在本文中,提出了一种基于类间竞争性学习的新型噪声 - 不敏感的高吉型孔(TSK)模糊系统,以供脑电图识别。 首先,提出了一种称为PCB-ICL的贝叶斯框架中的可能聚类,以确定模糊规则的先例参数。 由可能的C均值聚类继承,PCB -ICL是噪声不敏感的。 PCB-ICL学习竞争关系中不同类别的集群中心。 所获得的聚类中心被同一类的样品吸引,也被其他类的样品排除在外,并从异质数据中推开。 PCB-ICL使用Metropolis-Hastings方法来获得最佳的聚类结果,以交替的迭代策略。 因此,学到的先行参数具有高解释性。 为了进一步提高规则的噪声不敏感性,采用了不对称的期望项和ho -kashyap程序来学习规则的结果参数。 基于上述想法,提出了TSK模糊系统,称为PCB-ICL-TSK。 对现实世界脑电图数据的全面实验表明,所提出的模糊系统可实现脑电信号识别的稳健性和有效性能。EEG目前是癫痫研究过程中非常重要的工具。在本文中,提出了一种基于类间竞争性学习的新型噪声 - 不敏感的高吉型孔(TSK)模糊系统,以供脑电图识别。首先,提出了一种称为PCB-ICL的贝叶斯框架中的可能聚类,以确定模糊规则的先例参数。由可能的C均值聚类继承,PCB -ICL是噪声不敏感的。PCB-ICL学习竞争关系中不同类别的集群中心。所获得的聚类中心被同一类的样品吸引,也被其他类的样品排除在外,并从异质数据中推开。PCB-ICL使用Metropolis-Hastings方法来获得最佳的聚类结果,以交替的迭代策略。因此,学到的先行参数具有高解释性。为了进一步提高规则的噪声不敏感性,采用了不对称的期望项和ho -kashyap程序来学习规则的结果参数。基于上述想法,提出了TSK模糊系统,称为PCB-ICL-TSK。对现实世界脑电图数据的全面实验表明,所提出的模糊系统可实现脑电信号识别的稳健性和有效性能。
自旋回波序列的对比度特性以及对射频和磁场不均匀性的固有不敏感性使其成为临床高场协议中特别理想的补充,因为在临床高场协议中,磁化率效应可能非常明显。快速成像方法,例如 Turbo Spin Echo (TSE),使用一系列重新聚焦脉冲(Turbo 因子或回波序列长度 (ETL))来实现在每个激励脉冲之后执行多个相位编码步骤。然而,增加的 RF 功率沉积会严重限制高场多层应用中的覆盖范围,因为功率沉积或比吸收率 (SAR) 随着场强的平方以及翻转角的平方而增加。此外,增加的饱和度和磁化传递效应会降低对比度和信噪比(CNR 和 SNR)。高分辨率 3D 采集能够精确表征和定位解剖和病理,但采集时间过长,T2 加权序列通常仅在 2D 模式下可行。采集速度的提高受到回波序列长度(T2 衰减限制)的限制,并且由于对比度和模糊的损失,通常无法获得非常长的回波序列。为了在 3T 及以上条件下使用这些序列实现高场和 3D 成像,需要实施适当的措施来解决这些问题。
纳米制造技术的最新进展使得人们能够制造出具有纳米级自由空间间隙的真空电子器件。这些纳米电子器件具有冷场发射和通过自由空间传输的优势,例如高非线性和对温度和电离辐射的相对不敏感性,同时大大减少了占用空间,增加了工作带宽并降低了每个器件的功耗。此外,平面真空纳米电子器件可以很容易地以类似于典型的微纳米级半导体电子器件的规模进行集成。然而,这些器件中不同电子发射机制之间的相互作用尚不清楚,其他人已经注意到它们与纯 Fowler-Nordheim 发射不一致。在这项工作中,我们系统地研究了平面真空纳米二极管的电流-电压特性,这些二极管的曲率半径为几纳米,发射极和集电极之间有自由空间间隙。通过研究由两种不同材料制成的几乎相同的二极管在不同环境条件(如温度和大气压)下的电流-电压特性,我们能够清楚地分离出单个器件中的三种不同发射模式:肖特基、福勒-诺德海姆和饱和。我们的工作将实现对真空纳米电子器件的稳健而准确的建模,这对于需要能够在极端条件下运行的高速、低功耗电子器件的未来应用至关重要。
摘要:热休克蛋白在癌症中上调,保护多种客户蛋白免于降解。因此,它们通过减少细胞凋亡和增强细胞存活和增殖,促进肿瘤发生和癌症转移。这些客户蛋白包括雌激素受体 (ER)、表皮生长因子受体 (EGFR)、胰岛素样生长因子-1 受体 (IGF-1R)、人表皮生长因子受体 2 (HER-2) 和细胞因子受体。这些客户蛋白降解的减少会激活不同的信号通路,例如 PI3K/Akt/NF- κ B、Raf/MEK/ERK 和 JAK/STAT3 通路。这些通路促成了癌症的特征,例如生长信号的自给自足、对抗生长信号的不敏感性、逃避细胞凋亡、持续的血管生成、组织侵袭和转移以及无限的复制能力。然而,与其他 HSP90 抑制剂相比,ganetespib 的副作用较小,因此被认为是一种有前途的癌症治疗策略。Ganetespib 是一种潜在的癌症治疗方法,在针对肺癌、前列腺癌和白血病等各种癌症的临床前测试中显示出良好的前景。它还对乳腺癌、非小细胞肺癌、胃癌和急性髓细胞白血病表现出很强的活性。研究发现,ganetespib 可导致这些癌细胞凋亡和生长停滞,目前正进行 II 期临床试验,将其作为转移性乳腺癌的一线疗法进行测试。在这篇综述中,我们将根据最近的研究重点介绍 ganetespib 的作用机制及其在治疗癌症中的作用。