由于诊断较晚和缺乏早期发现的筛查方法,高级别浆液性卵巢癌 (HGSOC) 成为死亡率最高的妇科恶性肿瘤。在本文中介绍的工作中,我们研究了一项回顾性和多中心队列,该队列包含 250 份在常规妇科筛查中收集的巴氏涂片检查档案。样本采集于不同时间点(从诊断前 1 个月到 13.5 年),来自 113 名随后被诊断为 HGSOC (pre-HGSOC) 的无症状女性和 77 名健康女性。通过对巴氏涂片检查样本中的 DNA 进行低通全基因组测序,以拷贝数谱异常 (CPA) 的形式检测基因组不稳定性。从 HGSOC 前女性的巴氏涂片检查样本中提取的 DNA 的 CPA 值明显高于健康女性样本的 CPA 值。与克隆致病性 TP53 突变的纵向分析一致,该检测可在诊断前 9 年内检测到 HGSOC 的存在。这一发现证实了肿瘤细胞不断从菌毛脱落到宫颈管,为 HGSOC 的早期诊断提供了一条新途径。我们将 CPA 评分整合到 EVA(早期卵巢癌)测试中,其敏感性为 75%(95% CI,64.97 至 85.79),特异性为 96%(95% CI,88.35 至 100.00),准确率为 81%。这项原理验证研究表明,通过分析宫颈管涂片中的 DNA 基因组变异可以早期诊断 HGSOC。
摘要:光谱扩散(SD)代表实施固态量子发射器作为无法区分光子来源的实质性障碍。通过在低温温度下对单个胶体量子点进行高分辨率发射光谱,我们证明了量子限制的Stark效应与SD之间的因果关系。通过统计分析发射光子的波长,我们表明,提高过渡能量对应用电场的敏感性会导致光谱波动的扩增。这种关系在定量上适合直接模型,表明在微观尺度上存在随机电场,其标准偏差平均为9 kV/cm。当前方法将使SD在多种类型的量子发射器(例如固态缺陷或有机铅卤化物钙钛矿量子点)中进行研究,对此,光谱不稳定性是量子传感应用的关键障碍。关键字:量子光学元件,胶体量子点,光谱扩散,鲜明效果,激子细胞结构
上下文。在先前的研究中估计了冠状环中扭结波的能量频道。最近的数值模拟表明,扭结振荡可以在磁性流管中诱导开尔文 - 螺旋不稳定性(KHI)。这种非线性过程打破了通常包含在先前的本本征分析中的假设。因此,需要重新检查当前能量磁通的分析表达式。目标。在当前的工作中,我们的目标是将数值频率与以前的分析公式进行比较,并为冠状环中扭结波的能量频率估算而建立修改。方法。在理想的磁流失动力学(MHD)的框架内工作,我们进行了三维(3D)冠状动脉圆柱振荡的模拟。还采用了前向模型将我们的数值结果转化为使用FOMO代码的可观察结果。结果。我们发现,先前对扭结能量频道的估计是合理的,直到在KHI充分开发之前。然而,随着小涡流的发展,从分析公式中得出的能量频道变得小于根据我们的数值结果计算得出的总po弹孔。此外,当降低原始数值分辨率以匹配逼真的仪器分辨率时,例如,太阳能轨道(SO)上的极端紫外成像仪(EUI)时,能量频率比数值小得多。结论。应通过将其乘以约2倍来修改根据分析公式计算出的能量频道。涉及基于SO / EUI观察的能量频道估计,该因素应大约在3和4之间。< / div>。
摘要:制备了NiO/β-Ga2O3异质结栅场效应晶体管(HJ-FET),并通过实验研究了在不同栅极应力电压(VG,s)和应力时间(ts)下器件的不稳定性机制。发现了器件在负偏压应力(NBS)下的两种不同退化机制。在较低的VG,s和较短的ts下,NiO体陷阱捕获/脱捕获电子分别导致漏电流的减少/恢复。在较高的VG,s或较长的ts下,器件的传输特性曲线和阈值电压(VTH)几乎永久地负移。这是因为界面偶极子几乎永久地电离并中和了异质结界面上的空间电荷区(SCR)中的电离电荷,导致SCR变窄。这为研究NiO/β-Ga2O3异质结器件在电力电子应用中的可靠性提供了重要的理论指导。
plk1是细胞周期的主要调节剂,其功能范围从有丝分裂承诺,中心体成熟,双极纺锤体形成,染色体分离,染色体分离,在细胞因子中的毛茸茸形成,共同防止基因组不稳定性和可预防基因组不稳定性和对女子细胞的传播到子细胞[1,2](图1)。在其在有丝分裂过程中的作用外,PLK1还是DNA复制,DNA损伤响应(DDR),G2 DNA损伤检查点,染色体动力学和微管动力学的调节剂,其与这些途径中涉及的几个关键因素的相互作用和磷酸化相互作用[3,4]。PLK1在细胞周期的各个阶段的协调依赖于空间和时间调节,主要是通过转录和翻译后修饰[2,5,6]。PLK1表达模式受到动态控制,并且与正常成人组织的细胞周期进程有关[6,7]。通常在相间的相间较低,PLK1蛋白水平在整个S相逐渐增加,并在G2/m相中达到最大值。然后,它们在有丝分裂后大大降解[4,5,7]。plk1表达(在mRNA和蛋白质上
摘要 激光雷达测量和无人机摄影测量提供的高分辨率点云非常适合调查斜坡变形。然而,今天这些点云中包含的信息很少得到充分利用。这项研究展示了瑞士的三个大规模斜坡不稳定的例子,出于灾害预防的原因,这些斜坡受到积极监测。我们使用通过地面激光扫描获取的点云来 (1) 识别各个岩石隔室运动行为的差异;(2) 突出显示移动岩体中的活动剪切面;(3) 确定驱动斜坡位移的运动过程;(4) 根据岩石滑坡的 3D 表面运动模拟基底滑动面;(5) 计算精确的位移角;(6) 提供对不稳定岩石体积的估计。这些信息对过程理解做出了重要贡献,从而支持了灾害管理中的决策。
马克西米利安 W. Feil1,2,Maximilian W. Feil1,2,Maximilian W. Feil1,2,Maximilian W. Feil1,2,Maximilian W. Feil1,2,A ∗,Katja Waschneck1,B,B,B,Hans Reisinger1,C,C. ER1,C,Paul Salmen1,D,Gerald Rescher3,E,Thomas Aichinger3,F,∗,Katja Waschneck1,B,Hans Reisinger1,C,Paul Salmen1,D,Gerald Rescher3 3,F,∗,Katja Waschneck1,B,Hans Reisinger1,C,Paul Salmen1,D,Gerald Rescher3,E,Thomas Aichinger3,F,F,∗,Ka tja Waschneck1,B,B,Hans Reisinger1,C,C,C,D,D,Gerald,Gerald,Gerald,aiching b.1 Salmen1,D,Gerald Rescher3,E,Thomas Aichinger3,F,∗,Katja Waschneck1,B,Hans Reisinger1,C,Paul Salmen1,D,Gerald Rescher3,E,E,E,Thomas Aichinger3,F,F,F,Thomas aichinger3,F,F,f,katja reisinger,salmen,salmen,salmen,thom thom thom 3, A Waschneck1,B,Hans Reisinger1,C,Paul Salmen1,D,Gerald Rescher3,E,Thomas Aichinger3,F,
简单总结:实验/病理学观察到基因组混乱(包括大规模易位、染色体碎裂和多倍体癌细胞),凸显了基因组重组在进化中的重要性。测序和生物信息学分析的最新进展凸显了这种染色体多样性。基因组的进化已在宏观进化和物种形成领域以及癌症和肿瘤进展的背景下得到研究。进化是适应环境和为未来生存压力做准备的固有过程。人类细胞具有可塑性,在正常条件下产生基因组多样性的零星时间涉及几种机制,例如在配子发生过程中或在癌症等病理过程中。有趣的是,染色体不稳定的模式在进化和癌症中惊人地相似。在这里,我们将讨论导致从癌症到物种形成的几种染色体模式的一些事件,并讨论与染色体不稳定相关的疾病。
成功的发芽和幼苗建立是自然环境中作物产量和植物生存的重要决定因素。发芽势受到次优环境条件的损害,这些环境条件会导致种子老化和高水平的基因组损伤。然而,在随后的幼苗生长上积累的DNA损伤的诱变和生长抑制潜力在很大程度上是未知的。拟南芥种子在染色体断裂修复因子DNA连接酶4和DNA连接酶6中表现出对自然衰老的影响的超敏反应,相对于野生型种子,发芽活力和幼苗生物量降低。在这里,我们确定陈旧的拟南芥种子在根生组织中显示出较高的程序性细胞死亡(PCD)水平,该拟南芥持续到幼苗建立中,在DNA双链断裂中表现出较高的细胞死亡。报告基线确定了种子老化对突变水平和肉体内重组频率的影响。种子恶化导致萌发幼苗的移码突变和基因组不稳定性的水平显着升高。因此,在植物生命周期的种子阶段产生的升高水平的基因组损伤可能对植物的随后发育产生显着影响。此外,种子老化的诱变作用可能对植物种群和生态系统的基因组稳定性具有长期影响。总体上,我们确定了在次优质量种子对随后的植物生长和基因组稳定性的影响中累积的基因组损害,这对农作物产量和植物生存的影响有相关的影响。