这种反思借鉴了数十年来美国在美国和城市规模上的基于地点政策的经验。经过多年的审判可以通过几种具体的方式为未来的基于地点的政策提供信息。对于一个人来说,他们应该对基础条件和参与者敏感,这些条件和参与者既可以使大型空间计划的成功,尤其是国家(或地区)和地方政府的作用。他们还将比以往任何时候都需要保持课程:维持投资水平;适应链条冲击并使其具有弹性;适应和利用市场发展,例如技术变革;应对包括多样性在内的劳动力挑战;并认识到甚至威胁最精心设计的干预措施的商业限制。最重要的是,基于地点的计划将需要面对次国参与者吸收和使用国家资助能力有限的挑战,这与威胁我们福祉的挑战成正比,即气候变化和社会凝聚力的侵蚀。
摘要:量子线性系统算法(QLSA)具有加快依赖求解线性系统的算法的潜力。内部方法(IPM)产生了解决优化问题的多项式时间算法的基本家族。IPMS在每次迭代中求解一个牛顿线性系统以找到搜索方向,因此QLSA可以潜在地加速IPMS。由于当代量子计算机中的噪声,这种量子辅助IPM(QIPM)仅允许牛顿线性系统的不精确解决方案。通常,不精确的搜索方向导致不可行的解决方案。在我们的工作中,我们提出了一个不可天性的QIPM(IF-QIPM),并在解决线性约束的二次优化问题方面表现出了优势。我们还将算法应用于ℓ1 -Norm软边缘支持向量机(SVM)问题,并获得有关依赖性尺寸的最佳复杂性。这种复杂性结合比任何产生经典解决方案的现有经典或量子算法要好。
本文研究了考虑不精确性的复杂系统的可靠性。通过结合来自不同领域(即结构可靠性和系统可靠性)的两种方法,我们得到了一种新方法。生存特征、模糊概率理论和两种版本的非侵入随机模拟 (NISS) 方法的概念经过调整和合并,提供了一种有效的方法来量化考虑整个不确定性谱的复杂系统的可靠性。新方法结合了其两个原始组件的优势特征:1. 由于生存特征的分离特性,计算工作量显著减少,即一旦计算出系统结构,就可以测试概率部分的任何可能特征,而无需重新计算结构;2. 由于采用了改进的 NISS 方法,样本量显著减少,只需要进行一次随机模拟,避免了传统上采用的双循环模拟。除了理论方面的融合之外,该方法还用于分析轴流压缩机和任意复杂系统的功能模型,提供准确的结果并展示出效率和广泛的适用性。
最近的高级深度学习技术显示了各种领域的有希望的结果,例如计算机视觉和自然语言处理。深度神经网络在监督学习中的成功在很大程度上依赖大量标记的数据。但是,由于标签和隐私问题的成本等各种原因,以目标标签获得标记的数据通常是具有挑战性的,这些原因挑战了现有的深层模型。尽管如此,使用不精确监督的数据相对容易,即具有与目标任务相关的标签/标签。例如,社交媒体平台上有数十亿个具有自定义标签的帖子和图像,这些帖子和图像不是目标分类任务的确切标签,但通常与目标标签有关。有望利用这些标签(不精确的监督)及其与目标类别的关系来生成标记的数据以促进下游分类任务。但是,对此的工作非常有限。因此,我们研究了一个新的问题,该问题是通过不精确监督标记的数据生成。我们提出了一个名为Addes的新颖生成框架,可以通过通过不精确的监督和不固有的监督和目标类别之间的关系从数据中学习,可以合成目标分类任务的高质量LA。图像和文本数据集的实验结果演示了提出的添加的有效性,以生成来自不精确监督的现实标记数据,以促进目标分类任务。
意味着必须满足两个条件:1) 所有概率或概率分布都是已知的或完全可确定的;2) 系统组件是独立的,即描述组件可靠性行为的所有随机变量都是独立的,或者它们的依赖关系是精确已知的。如果满足这两个条件(这里假设系统结构是精确定义的,并且存在一个已知函数将系统故障时间 (TTF) 和组件的 TTF 或某些逻辑系统函数联系起来),那么总是可以(至少在理论上)计算出精确的系统可靠性度量。如果至少违反其中一个条件,则只能获得区间可靠性度量。实际上,很难期望第一个条件得到满足。如果我们掌握的有关组件和系统功能的信息是基于统计分析的,那么应该使用概率不确定性模型来数学表示和处理该信息。但是,用于描述系统和组件的可靠性评估可能来自各种来源。其中一些可能是基于相对频率或完善的统计模型的客观测量。部分可靠性评估可能由专家提供。如果系统是新的或仅作为项目存在,那么通常没有足够的统计数据来作为精确概率分布的基础。即使存在这样的数据,我们也并不总是从统计角度观察它们的稳定性。此外,可能无法准确观察到故障时间,甚至可能错过。有时,故障根本不发生或部分发生,导致对故障时间的观察被审查,而审查机制本身可能很复杂且不准确。因此,可能只有部分关于系统组件可靠性的信息可用,例如,平均故障时间 (MTTF) 或一次故障概率的界限。当然,人们总是可以假设 TTF 具有一定的概率分布,例如指数、威布尔和对数正态分布是流行的选择。但是,如果我们的假设仅基于我们的经验或专家的经验,我们应该如何信任可靠性分析的结果。有人可能会回答说,如果专家根据自己的经验为 MTTF 提供了一个间隔,那么我们为什么要拒绝他对 TTF 概率分布的假设呢?事实是,由于人类评估的精度有限,专家得出的判断通常不准确且不可靠。因此,任何关于某个概率分布的假设,加上专家判断的不准确性,都可能导致错误的结果,而这些结果往往无法验证