• 这三种力之间的相互作用可能导致多种不良现象: – 发散(静态气动弹性现象) – 颤振(动态气动弹性现象) – 极限环振荡(非线性气动弹性现象) – 涡旋脱落、抖振、驰振(非稳定气动现象)
• 这三种力之间的相互作用可能导致多种不良现象: – 发散(静态气动弹性现象) – 颤振(动态气动弹性现象) – 极限环振荡(非线性气动弹性现象) – 涡旋脱落、抖振、驰振(非稳定气动现象)
计算机服务器、电源和电子镇流器等非线性负载的增加导致电力系统运行中出现各种不良现象。其中最重要的是谐波污染、电压失真和电力系统电压波动。谐波电压分量会导致重启、电力系统损耗、错误、机器过热,并可能对通信线路造成严重干扰。SPC 可以实时监视和控制单相非线性负载(如数据库、UPS 和 IT 服务器)的激活状态。因此,SPC 可以保持网络的最佳电能质量,符合 IEEE Std. 的限制。519、AS-2279、EN61000-3-4 和 BS G5/4。
流体结构相互作用非常重要,在设计飞机、航天器、发动机和桥梁等许多工程系统时必须考虑这一因素。在由易疲劳材料组成的结构中,这些振荡相互作用可能非常严重。疲劳可以描述为一种循环载荷,它会导致材料产生循环应力和应变,在这种循环载荷的作用下,材料在临界阶段会失效。飞行过程中,飞机机翼会受到各种与时间相关的载荷,导致机翼变形和振动,这对结构设计和安全性是一个挑战,作用在机翼上的载荷会导致高应力集中区域形成裂纹,裂纹会不断扩展,直到达到最大值,之后飞机机翼结构将因疲劳而失效。因此,飞机机翼是一种极易疲劳的结构,因此考虑飞机机翼结构的 FSI 非常重要。由于飞机出现颤振、抖振等各种不良现象,流体与柔性机翼之间的相互作用极为重要。
近年来,社交网络和微博网站的普及度不断提升,吸引了越来越多的用户。凭借庞大的用户群,社交媒体会持续发布大量的用户生成内容。随着社交媒体使用量的增加,其他不良现象和行为也随之出现。社交媒体用户经常滥用这种自由来传播辱骂性或仇恨性的帖子或评论。在许多情况下,用户生成的内容是攻击性的或主动的,用户可能不得不应对网络攻击或网络欺凌等威胁以及其他不良行为(Warner and Hirschberg 2012)。因此,检测并尽可能限制有害帖子的传播变得越来越重要。尽管已经发布了几个毒性或辱骂性语言检测数据集(Wulczyn 等人,2016 年;Borkan 等人,2019 年)和模型(Borkan 等人,2019 年;Pavlopoulos 等人,2017 年;Zampieri 等人,2019 年),但其中大多数对整个评论或文档进行分类,并没有识别出使文本有毒的跨度。但突出显示这些有毒跨度可以
摘要:电感耦合等离子体反应离子刻蚀 (ICP-RIE) 是一种选择性干法刻蚀方法,用于各种半导体器件的制造技术。刻蚀用于形成非平面微结构 - 沟槽或台面结构,以及具有受控角度的倾斜侧壁。ICP-RIE 方法结合了高精加工精度和可重复性,非常适合刻蚀硬质材料,例如 SiC、GaN 或金刚石。本文回顾了碳化硅刻蚀 - 介绍了 ICP-RIE 方法的原理、SiC 刻蚀结果和 ICP-RIE 工艺的不良现象。本文包括 SEM 照片和从不同的 ICP-RIE 工艺获得的实验结果。首次报道了向 SF 6 等离子体中添加 O 2 以及 RIE 和 ICP 功率的变化对工艺中使用的 Cr 掩模的刻蚀速率和 SiC/Cr 刻蚀选择性的影响。 SiC 是一种极具吸引力的半导体,具有许多优异的性能,通过亚微米半导体加工技术的进步可以带来巨大的潜在利益。最近,人们对 SiC 产生了浓厚的兴趣,因为它在电力电子领域具有广泛的应用潜力,特别是在汽车、可再生能源和铁路运输领域。
负责此过程的酶称为酪氨酸酶,有时被称为多酚氧化酶,单酚氧化酶,酚酶或儿茶醇酶。它存在于人类,植物,微生物和真菌中。黑色素颜料都需要该酶为必不可少的成分。酪氨酸酶存在于动物生物中,尤其是在皮肤,头发和眼睛的颜料中。酪氨酸酶可能会导致与其固有颜色无关的食物的变暗。诸如果汁和葡萄酒之类的饮料可能会出现外观和风味的下降,以及浊度和降水的发生。经常是由酶促过程引起的水果和蔬菜中褐变的不良现象,需要避免。酪氨酸酶抑制剂用于阻止导致酪氨酸酶酶褐变的催化氧化。当前,这些基本成分通常在皮肤美白溶液中,尤其是在化妆品领域中。此外,酪氨酸酶抑制剂在治疗与黑色素色素沉着相关的皮肤问题方面具有实际应用。此外,酪氨酸酶抑制剂在竞争和可逆地阻碍了人类黑素细胞酪氨酸酶的活性,从而阻碍了黑色素的产生。
摘要:电感耦合等离子体反应离子刻蚀 (ICP-RIE) 是一种选择性干法刻蚀方法,用于各种半导体器件的制造技术。刻蚀用于形成非平面微结构 - 沟槽或台面结构,以及具有受控角度的倾斜侧壁。ICP-RIE 方法结合了高精加工精度和可重复性,非常适合刻蚀硬质材料,例如 SiC、GaN 或金刚石。本文回顾了碳化硅刻蚀 - 介绍了 ICP-RIE 方法的原理、SiC 刻蚀结果和 ICP-RIE 工艺的不良现象。本文包括 SEM 照片和从不同的 ICP-RIE 工艺获得的实验结果。首次报道了向 SF 6 等离子体中添加 O 2 以及 RIE 和 ICP 功率的变化对工艺中使用的 Cr 掩模的刻蚀速率和 SiC/Cr 刻蚀选择性的影响。 SiC 是一种极具吸引力的半导体,具有许多优异的性能,通过亚微米半导体加工技术的进步可以带来巨大的潜在利益。最近,人们对 SiC 产生了浓厚的兴趣,因为它在电力电子领域具有广泛的应用潜力,特别是在汽车、可再生能源和铁路运输领域。