功能性磁共振成像 (fMRI) 中的一个关键问题是从嘈杂的高维信号中估计空间活动模式。空间平滑提供了一种规范化此类估计的方法。然而,标准平滑方法忽略了神经活动的相关性在不同的脑区可能以不同的速率下降,或者在解剖或功能边界上表现出不连续性的事实。此外,这种方法没有利用这样一个事实,即相距甚远的脑区可能由于双侧对称或脑区网络组织而表现出强相关性。为了捕捉这种非平稳空间相关结构,我们引入了脑核,一种用于全脑活动模式的连续协方差函数。我们将脑核定义为从 3D 脑坐标到潜在嵌入空间的连续非线性映射,用高斯过程 (GP) 参数化。脑核将体素之间的先验协方差指定为它们在嵌入空间中位置之间距离的函数。 GP 映射以非线性方式扭曲大脑,使高度相关的体素在潜在空间中靠得很近,而不相关的体素则相距很远。我们使用静息状态 fMRI 数据估计大脑内核,并开发一种基于块坐标下降的精确、可扩展的推理方法来克服高维(10-100K 体素)的挑战。最后,我们通过多任务 fMRI 数据集的大脑解码和因子分析来说明大脑内核的实用性。
大量核素和电子的自组织导致物质出现不同相。相代表一种可以在空间上无限复制的组织方式,其特性会随着外场的变化而不断变化,与其他相不同。因此,当材料经历相变时,某些系统特性会发生变化。相变的一般特征是,它要么涉及根据相变的朗道范式 1 – 3 的序参量的不连续性,要么涉及拓扑不变量的变化 4、5。发现、表征和控制物质的不同相是凝聚态物理学和材料科学的核心任务。特别是,对二维系统中相变的研究在促进我们对相变的理解方面发挥了至关重要的作用(图 1)。 2D 材料 6 – 10 是可以在两个方向上无限复制,但在第三个方向上具有原子级厚度的物质。例如,单层 MoS 2 的厚度为 6.7 Å,在通过机械剥离 6 制备的实验室样品中,平面内厚度通常为微米,因此,其长宽比为 ~10 3 或更大。为了进行比较,一张典型的 A4 大小的纸(~100 μm × 29.7 cm × 21 cm)的长宽比也相似,为 ~10 3 。虽然 2D ↔ 3D/1D 相变无疑是有趣的讨论主题,但在这里,我们重点关注 2D → 2D 转变。最早对 2D 相变的研究大多是理论上的;例如二维 Ising 自旋模型的精确解 11 、 Hohenberg–Mermin–Wagner 定理的提出 12 , 13 以及 Kosterlitz–Thouless 转变的发现 14 , 15 (图 1 )。20 世纪 80 年代初,半导体技术的进步使得人们能够实验研究半导体界面和强磁场下的二维电子系统,从而带来了突破性的
在结构键中,粘附器和粘合剂之间的界面几乎是二维的,使其容易受到微小污染的影响,这可能会导致弱键。诸如联邦航空管理局(FAA)等监管组织通常需要次要键入初级结构中的冗余负载路径,以减轻无法证明债券绩效的。为了解决这个问题,NASA融合航空解决方案(CAS):复合材料的粘合无粘合键(Aerobond)项目正在研究重新计算的航空航天环氧树脂 - 摩trix树脂,以在二级键合和固定过程中启用关节界面上的树脂的反射和扩散。组装过程中基质树脂的反流和混合可以消除界面处的材料不连续性,从而消除了在接近二维边界处键对粘合性能的依赖性。Aerobond工艺开发评估了许多参数,包括所使用的材料,环氧树脂的化学计量偏移,治愈的时间和温度以及每个层的厚度。没有原位过程监测,在机械测试完成之前,测试文章的状况尚不清楚。本文描述了使用原位超声检查系统来监视使用Aerobond技术组装的两个复合零件的连接。这项工作通过在整个治疗周期的关节处测量波反射或缺乏波浪反射来量化界面。此外,结果表明何时发生环氧树脂的回流和固化。通过使用最近开发的原位检验方法与移动超声传感器,可以在高分辨率的大部分关节上获得局部结果。
我们研究了有限温度和边缘引起的对电荷和电流密度的影响,该电荷位于磁通量螺纹的2D锥形空间上。场算子在圆形边界上受约束,与圆锥形顶点,袋边界条件以及条件在术语前面的相反符号的条件约束。在二维空间中存在两个clifford代数的不相等表示,并为实现这些表示形式的两个字段提供了分析。圆形边界将锥形空间分为两部分,称为内部(I-)和外部(E-)区域。径向电流密度消失。对于一般的化学势情况,在两个区域中,电荷的预期值和方位角电流密度都明确分离。它们是磁通量的周期性功能和奇数功能,在磁通量和化学势的迹象的同时变化下。与文献中先前考虑的费米凝结物的重要差异是,当观测点趋于边界时,平均电荷和当前密度在极限中是有限的。在电子区域中,所有旋转模式都是规则的,总电荷和电流密度是磁通量的连续功能。在I区中,相应的期望值是在磁通量与通量量子之比的半数值下不连续的。这些不连续性来自I区中不规则模式的贡献。2D费米子模型,在奇偶校验和时间反向转换下(在没有磁场的情况下)结合了两个旋转磁场,意识到克利福德代数的不相等表示。讨论了这些模型中的总电荷和当前密度,以针对单独字段的边界条件的不同组合进行讨论。在2D Dirac模型描述的石墨锥中讨论了电子子系统的应用。
表面微加工成功的光学应用之一是开发静电驱动微机械镜阵列(协调、可移动的反射或折射元件的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜段,用作较大显示器中的一个像素,元件的驱动使用二进制数字控制信号并行协调。在这样的系统中,已经证明简单微机械致动器的制造成品率可以接近 100%。此外,已经确定可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化的 CMOS 电子阵列上构建 MEMS 结构来实现的。已经提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微机械连续膜可变形镜。在自适应光学中,重要的是可变形镜既连续又可精确调节。本文描述的设备是使用表面微机械技术制造的第一种连续镜。� 体微机械连续镜之前已经展示过。2 � 表面微机械镜已在波士顿大学设计、制造和测试。该设备由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于底层表面法向静电致动器阵列上。两个特点将该设备与以前的表面微机械镜系统区分开来。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有因分段边缘而产生的衍射干涉,也没有因填充因子低于 1 而导致的光强度损失。此外,新的可变形镜面装置可以精确、连续地控制镜面元件
简介 - 随着时变媒体的传播在各种领域都引起了很多关注。电磁系统和机械系统的先前工作都集中在培养基中的周期性变化上,从而使现象包括副局部扩增[1-3],非互联性传播[4-7]或拓扑作用[8-10]。最近的焦点已转移到传播波与非周期性变化的相互作用,尤其是培养基特性的边界或不连续性,尤其是折射率,尤其是折射率[11-13]。由于引入了时间边界[14],因此已将它们作为空间折射的时间类似物研究[15-22],并扩展到一般的时空变化[23-26]。已经提出了通过快速的时间变化来实现电磁波的各种功能,例如抗反射颞涂层[27],薄吸收器[28]或时射镜[29,30]。已经探索了时间边界的自然扩展,包括时间板和分层介质[31 - 34]和有限上升时间的边界[35]。时间边界可以启用宽带,线性频率转换[12,13],而无需典型的考虑常规非线性频率con版本,例如相位匹配[36 - 39]。在实验上,闪光电离[40,41],迅速变化的光学元表面[12],金属 - 官方导体波导的超快泵送[42]和电纵向控制的水波[43] [43]已显示出使用颞界实现频率的频率。我们采用由排斥>组成的一维声音晶格至关重要的是,达到时间边界通常需要外部田地的均匀变化[40,41,43]或泵送和输入信号的精确重合[12]。在这封信中,我们介绍了弹性特性中的声波折射的第一个实验示例。
纳米尺度对热传输的影响有望在先进半导体架构的散热中发挥重要作用,并提高新型热电材料的效率。热传输测量通常在宏观尺度上进行,并给出多材料结构(包括各种界面和材料)的整体响应。纳米级材料和界面中热传输的原子计算机模拟有助于分析实验,了解尺寸和时间尺度的限制效应,并评估相关的宏观模型。1 到目前为止,通过分子动力学 (MD) 模拟对原子尺度上的热传输进行建模主要遵循两种方法。第一种方法称为平衡 MD,2 基于在给定温度下平衡的系统中热流波动的量化。最终使用 Green-Kubo 或爱因斯坦涨落关系来提取块体材料的热导率。第二种方法称为非平衡 MD 或直接法 3,其基础是在热源和热沉之间建立稳态热流,并从温度梯度的斜率或不连续性中分别提取热体积电导率或界面电导率。在目前的研究中,我们开发了一种不同的方法,称为 AEMD,即“接近平衡” MD。通过划定一个与其他部分温度不同的加热部分,最初将系统设置为非平衡状态。然后监测接近平衡的情况,即两部分之间的温差随时间的变化。可以证明,对于大多数实际关注情况,温度衰减呈指数增长。通常在几十分之一到几百皮秒内达到平衡,因此,与平衡MD中自相关函数的计算和非平衡MD中稳态热流的建立相比,计算成本大大降低。此外,AEMD方法基于平均
表面微加工的一个成功光学应用是开发静电驱动微机械镜阵列(由可移动的反射或折射元件组成的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜面部分,可用作大型显示器中的一个像素,元件的驱动通过二进制数字控制信号并行协调。在这种系统中,已证明简单微机械致动器的制造成品率可以接近 100%。此外,已证实可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化 CMOS 电子器件阵列上构建 MEMS 结构来实现的。已提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微加工连续膜可变形镜。在自适应光学中,重要的是可变形镜既要连续又要精确可调。本文描述的装置是使用表面微加工技术制造的第一种连续镜。~ 体微加工连续镜之前已经展示过。2 ! 波士顿大学设计、制造和测试了表面微加工镜。该装置由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于表面法向静电致动器的底层阵列上。该装置有两个特点与以前的表面微加工镜系统不同。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有由于分段边缘而导致的衍射干扰,也没有由于填充因子低于 1 而导致的光强度损失。此外,新的可变形镜装置允许精确、连续地控制镜面膜。
表面微加工的一个成功光学应用是开发静电驱动微机械镜阵列(由可移动的反射或折射元件组成的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜面部分,可用作大型显示器中的一个像素,元件的驱动通过二进制数字控制信号并行协调。在这种系统中,已证明简单微机械致动器的制造成品率可以接近 100%。此外,已证实可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化 CMOS 电子器件阵列上构建 MEMS 结构来实现的。已提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微加工连续膜可变形镜。在自适应光学中,重要的是可变形镜既要连续又要精确可调。本文描述的装置是使用表面微加工技术制造的第一种连续镜。~ 体微加工连续镜之前已经展示过。2 ! 波士顿大学设计、制造和测试了表面微加工镜。该装置由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于表面法向静电致动器的底层阵列上。该装置有两个特点与以前的表面微加工镜系统不同。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有由于分段边缘而导致的衍射干扰,也没有由于填充因子低于 1 而导致的光强度损失。此外,新的可变形镜装置允许精确、连续地控制镜面膜。
单点钻石加工(SPDM)产生其他生产方法无法匹配的光滑加工表面。虽然对用SPDM进行铸造合金的机制进行了充分探索,但添加性制造零件的SPDM领域仍在很大程度上都没有。这项工作揭示了对添加性钛合金的表面产生过程的新见解,特别是Ti6al4v额外的低间隙(ELI)合金工件。我们对芯片形态的检查揭示了一种独特的芯片去除方式,该模式以前未记录在现有文献中。在添加性的TI6AL4V ELI工件的SPDM中,鉴定出在工具耙面上流动的芯片中的许多毛孔和不连续性,表明在材料的塑料流中看到了周期性间歇性裂纹。为了检查这种现象,开发了有限元分析(FEA)模型。尽管FEA模型可以很好地解释文献中报道的Cast Ti6al4v Eli的SPDM的加工力学和芯片形态,但它未能描述在这项工作中加化性工件加工过程中获得的芯片形态。这种差异强调了针对加上制造组件量身定制的创新模拟方法的需求。这项研究中的实验性OB用途强调了芯片形成的独特形式,与常规的TI6AL4V合金加工过程相反。在较低的饲料中,存在短而不连续的芯片形成,外围的撕裂。相反,在较高的饲料下,观察到了长,连续的带状芯片形成。此外,一些典型的添加剂制造缺陷出现在加工表面和芯片上。通过优化SPDT参数,在Addi ti6al4v Eli工件上实现了大约11.8 nm的表面粗糙度(RA)值。这项工作提供了有关SPDM的化合物制造组件的机制的全新视角,为后续研究提供了垫脚石。