抽象的许多神经退行性疾病与错误折叠的Prionic proins的传播有关。在本文中,我们分别分析了与帕金森氏症和阿尔茨海默氏病有关的α-羟基核蛋白和淀粉样蛋白β的错误折叠和扩散过程。我们引入并分析了一种阳性的数值方法,用于离散Fisher-Kolmogorov方程,建模积累和Prionic蛋白的扩散。提出的近似方法基于关于多边形和多面体网格的不连续的Galerkin方法,用于空间离散化和ϑ - 方法时间积分方案。我们证明了离散解决方案的存在和一个收敛结果,其中使用隐式欧拉方案进行时间整合。我们表明,所提出的方法是在结构上提供的,从某种意义上说,它可以保证离散解决方案是非负的,这在实际应用中至关重要。我们的数值模型的数字验证既是使用制成的解决方案,又是考虑二维多边形网格中的波前传播。接下来,我们提出了在矢状平面中二维脑切片中扩散的α-突触核蛋白的模拟。该模拟的多边形网格被凝聚为维持白色和灰质的区别,利用了polydg方法在网格结构中的灵活性。我们的数值模拟证实了所提出的方法能够捕获帕金森氏症和阿尔茨海默氏病的演变。最后,我们通过使用从磁共振图像重建的三维几何形状和从正电子发射断层扫描重建的初始条件来模拟淀粉样蛋白β在患者特异性设置中的扩散。
抽象的许多神经退行性疾病与错误折叠的Prionic proins的传播有关。在本文中,我们分别分析了与帕金森氏症和阿尔茨海默氏病有关的α-羟基核蛋白和淀粉样蛋白β的错误折叠和扩散过程。我们引入并分析了一种阳性的数值方法,用于离散Fisher-Kolmogorov方程,建模积累和Prionic蛋白的扩散。提出的近似方法基于关于多边形和多面体网格的不连续的Galerkin方法,用于空间离散化和ϑ - 方法时间积分方案。我们证明了离散解决方案的存在和一个收敛结果,其中使用隐式欧拉方案进行时间整合。我们表明,所提出的方法是在结构上提供的,从某种意义上说,它可以保证离散解决方案是非负的,这在实际应用中至关重要。我们的数值模型的数字验证既是使用制成的解决方案,又是考虑二维多边形网格中的波前传播。接下来,我们提出了在矢状平面中二维脑切片中扩散的α-突触核蛋白的模拟。该模拟的多边形网格被凝聚为维持白色和灰质的区别,利用了polydg方法在网格结构中的灵活性。我们的数值模拟证实了所提出的方法能够捕获帕金森氏症和阿尔茨海默氏病的演变。最后,我们通过使用从磁共振图像重建的三维几何形状和从正电子发射断层扫描重建的初始条件来模拟淀粉样蛋白β在患者特异性设置中的扩散。
b“摘要。我们考虑了u t d r ..u/ r n .u //的形式的方程式,其中n是整个空间r d和.u/是纽顿电位(laplacian的倒数),并且.u/是移动性。对于线性迁移率,.U/ D U,已提出方程和一些变化作为超导性或超流体的模型。在这种情况下,该理论会导致具有紧凑空间支持的特性的有界弱解的唯一性,特别是在空间强度u d c 1 t 1中具有恒定强度的圆盘涡流的特殊溶液在球中支撑的恒定强度的涡流涡流,在c 2 t 1 = d之类的时间内传播,因此显示出不连续的前面前面的前线。在本文中,我们提出了具有sublinear Mobility .u/ d u \ xcb \ x9b的模型,并使用0 <\ xcb \ x9b <1提出,并证明非负溶液到处恢复了积极性,并且在无限范围内显示出脂肪尾巴。该模型以许多方式作为上一个模型的正规化。尤其是,我们发现上一个涡流的等效物是一种明确的自相似解,如u d o.t 1 = \ xcb \ x9b /带有尺寸u d o的空间尾巴的时间。我们将分析限制为径向溶液,并通过特征方法构建解决方案。我们介绍了质量函数,该质量函数解决了汉堡方程的异常变化,并在分析中起着重要作用。我们从粘度解决方案的意义上表现出良好的性质。我们还构建了数值有限差分收敛方案。”
1 Google Research, 340 Main Street, Venice, CA 90291, United States of America 2 Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway 3 Department of Mathematics, University of California, Berkeley, CA 94720, United States of America 4 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, United States of美国5量子艺术情报实验室,NASA AMES研究中心,美国加利福尼亚州莫菲特菲尔德,美国664035,美国6物理与天文学系,加利福尼亚大学,加利福尼亚大学欧文分校,美国加利福尼亚大学72697,美国7计算研究司,美国劳伦斯伯克利国家实验室,伯克利国家实验室,美国,美国劳伦斯伯克利国家实验室。
1 Google Research, 340 Main Street, Venice, CA 90291, United States of America 2 Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Oslo, Norway 3 Department of Mathematics, University of California, Berkeley, CA 94720, United States of America 4 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, United States of美国5量子艺术情报实验室,NASA AMES研究中心,美国加利福尼亚州莫菲特菲尔德,美国664035,美国6物理与天文学系,加利福尼亚大学,加利福尼亚大学欧文分校,美国加利福尼亚大学72697,美国7计算研究司,美国劳伦斯伯克利国家实验室,伯克利国家实验室,美国,美国劳伦斯伯克利国家实验室。