weyl semimetals(WSM)中的电荷密度波(CDW)已被证明会诱导一个外来的轴心绝缘相,其中CDW的滑动模式(Phason)充当动力轴承纤维,从而产生大型的正磁磁性[Wang等人。修订版b 87,161107(r)(2013); Roy等人,物理。修订版b 92,125141(2015); J. Gooth等人,自然575,315(2019)]。在这项工作中,我们预测动态应变会诱导由CDW覆盖的时间 - 反转 - (Tr-)不变的WSM中的散装轨道磁化。我们将这种效果称为“动态压电效应”(DPME)。与[J. Gooth等人,Nature 575,315(2019)],在这项工作中引入的DPME发生在散装组合中(即,在散装中的静态和空间均匀,并且不依赖于闪光,例如phason。通过研究低能效果理论和最小的紧密结合(TB)模型,我们发现DPME源自有效的山谷轴纤维,以将电磁体的ELD结合使用,以应变诱导的Pseudo-gauge-gauge-gauge-eLD。尤其是在先前作品中研究的压电效应的特征是2D浆果曲率,而DPME代表了源自Chern-Simons 3-Form的基本3D菌株效应的第一个例子。我们进一步发现,DPME在CDW顺序参数相位的临界值时具有不连续的变化。我们证明,当DPME中有跳跃时,系统的表面会经历拓扑量子相变(TQPT),而整体则保持不变。因此,dpme在trimiant weyl-cdw中提供了边界TQPT的大量标志。
b“摘要。我们考虑了u t d r ..u/ r n .u //的形式的方程式,其中n是整个空间r d和.u/是纽顿电位(laplacian的倒数),并且.u/是移动性。对于线性迁移率,.U/ D U,已提出方程和一些变化作为超导性或超流体的模型。在这种情况下,该理论会导致具有紧凑空间支持的特性的有界弱解的唯一性,特别是在空间强度u d c 1 t 1中具有恒定强度的圆盘涡流的特殊溶液在球中支撑的恒定强度的涡流涡流,在c 2 t 1 = d之类的时间内传播,因此显示出不连续的前面前面的前线。在本文中,我们提出了具有sublinear Mobility .u/ d u \ xcb \ x9b的模型,并使用0 <\ xcb \ x9b <1提出,并证明非负溶液到处恢复了积极性,并且在无限范围内显示出脂肪尾巴。该模型以许多方式作为上一个模型的正规化。尤其是,我们发现上一个涡流的等效物是一种明确的自相似解,如u d o.t 1 = \ xcb \ x9b /带有尺寸u d o的空间尾巴的时间。我们将分析限制为径向溶液,并通过特征方法构建解决方案。我们介绍了质量函数,该质量函数解决了汉堡方程的异常变化,并在分析中起着重要作用。我们从粘度解决方案的意义上表现出良好的性质。我们还构建了数值有限差分收敛方案。”
森林生态系统正在迅速变化,景观级别的过程(例如干扰和散布)是变化的主要驱动力。因此,森林景观模型是在不断变化的环境条件及其对生态系统服务提供的影响下研究森林轨迹的重要工具。在这里,我们综合了基于个体的森林景观和干扰模型Iland的12年发展和应用。具体来说,我们描述了基本模型逻辑,并概述了多年来引入的模型组件。此外,我们概述了如何初始化,评估和参数化新应用程序的模型。iland是一种基于过程的森林景观模型,可模拟各个树木水平的森林动态。它解释了连续过程(树木生长,死亡率和再生)以及不连续的干扰(风,野火和生物剂)和森林管理。模拟涵盖了多个空间和时间尺度,从单个树木到10 5公顷的景观,从每小时的干扰动态到数百年的森林发展。环境条件由每日气候数据和高分辨率土壤信息表示。该模型旨在灵活地解决广泛的研究问题,具有丰富的图形用户界面和全面的脚本支持。该模型是开源的,并带有广泛的在线模型文档。iland应用于三大洲的50个同行评审的模拟研究中。应用主要集中在气候变化,干扰和森林管理对森林动态,生态系统服务提供和森林生物多样性的影响上。未来的模型开发可以解决森林生态系统以外的地下过程,生物相互作用和景观动态的表示。我们得出的结论是,基于过程的景观规模森林动态在单个树木水平上的模拟已证明是森林景观建模的宝贵方法。
MAEDA和同事在固体鼠类中首先发现EPR效应[1,2]。聚合物 - 毒物偶联物为静脉施用了10至100倍的浓度[2-4]。被动靶向的癌症药物在大约30年前首次到达诊所,并批准了一种基于EPR的药物,即一种高乙二醇化的脂质体药物Doxil。纳米载体优先通过被动靶向在实体瘤中渗漏和淋巴引流,因此优先通过被动靶向积聚。混乱的脉管系统和肿瘤微疗法(TME)和保留率的渗透性可导致TME中大分子的积累70倍。由于对恶性肿瘤的支撑至关重要的血管形成而产生的漏水和缺陷的脉管系统,再加上不完善的淋巴引流,允许EPR效应。肿瘤脉管系统的直径,形状和密度不规则,与不连续的血管不规则。这导致了几种条件,包括肿瘤中的杂种灌注,从流体,缺氧和酸性环境的外部灌注压力升高[5]。基于EPR的药物输送取决于各种因素,包括循环时间,靶向以及克服障碍的能力,这些因素取决于药物颗粒的大小,形状和表面特性。被动靶向主要基于扩散机制。结果,大小是EPR依赖性输送过程中的关键因素。形状和形态在被动靶向中也起着重要作用。研究表明,大约40至400 nm的纳米颗粒尺寸范围适合确保长期循环时间,并增加了肾脏清除率降低的肿瘤的积累[6]。通常,刚性的刚性,尺寸为50至200 nm的球形颗粒具有长期循环的最高趋势,以避免肝脏吸收
单点钻石加工(SPDM)产生其他生产方法无法匹配的光滑加工表面。虽然对用SPDM进行铸造合金的机制进行了充分探索,但添加性制造零件的SPDM领域仍在很大程度上都没有。这项工作揭示了对添加性钛合金的表面产生过程的新见解,特别是Ti6al4v额外的低间隙(ELI)合金工件。我们对芯片形态的检查揭示了一种独特的芯片去除方式,该模式以前未记录在现有文献中。在添加性的TI6AL4V ELI工件的SPDM中,鉴定出在工具耙面上流动的芯片中的许多毛孔和不连续性,表明在材料的塑料流中看到了周期性间歇性裂纹。为了检查这种现象,开发了有限元分析(FEA)模型。尽管FEA模型可以很好地解释文献中报道的Cast Ti6al4v Eli的SPDM的加工力学和芯片形态,但它未能描述在这项工作中加化性工件加工过程中获得的芯片形态。这种差异强调了针对加上制造组件量身定制的创新模拟方法的需求。这项研究中的实验性OB用途强调了芯片形成的独特形式,与常规的TI6AL4V合金加工过程相反。在较低的饲料中,存在短而不连续的芯片形成,外围的撕裂。相反,在较高的饲料下,观察到了长,连续的带状芯片形成。此外,一些典型的添加剂制造缺陷出现在加工表面和芯片上。通过优化SPDT参数,在Addi ti6al4v Eli工件上实现了大约11.8 nm的表面粗糙度(RA)值。这项工作提供了有关SPDM的化合物制造组件的机制的全新视角,为后续研究提供了垫脚石。
基因打靶 (GT) 能够使用供体 DNA 作为模板进行精确的基因组修饰(例如,引入碱基替换)。结合用于选择 GT 细胞的选择标记的干净切除,GT 有望成为一种标准的、普遍适用的碱基编辑系统。之前,我们展示了通过 piggyBac 转座子从水稻中 GT 修饰的位点进行标记切除。然而,piggyBac 介导的标记切除的局限性在于它只能识别 TTAA 序列。最近,我们提出了一种新颖的通用精确基因组编辑系统,该系统由 GT 和随后的单链退火 (SSA) 介导的标记切除组成,原则上不受靶序列的限制。在本研究中,我们将碱基替换引入了 OsCly1 基因的 microRNA miR172 靶位点,OsCly1 基因是参与闭花授粉开花的大麦 Cleistogamy1 基因的直系同源物。为确保有效的 SSA,GT 载体在选择标记的两端都含有 1.2 kb 的重叠序列。使用带有重叠序列的载体进行正负选择介导的 GT 的频率与使用不带重叠序列的 piggyBac 介导的标记切除载体的频率相当,在 T 0 代中,SSA 介导的标记切除频率计算为 ∼ 40%。这个频率被认为足以产生无标记细胞,尽管它低于使用 piggyBac 介导的标记切除的频率(接近 100%)。到目前为止,使用碱基编辑器和基于 CRISPR/Cas9 的 prime 编辑系统在目标基因的不连续多个碱基中引入精确替换已经相当困难。在这里,利用 GT 和我们的 SSA 介导的标记切除系统,我们成功地在 OsCly1 基因的 miR172 靶位点上不仅实现了单个碱基的精确替换,而且还实现了人工不连续的多个碱基的精确替换。
抽象的目的是对前瞻性评估Guselkumab至48周的影响,在牛皮癣关节炎(PSA)患者亚组中的各种临床结果以及对肿瘤坏死因子抑制剂(TNFI-IR)的反应不足的各种临床结果中的影响。亚组是由基线人口统计学,疾病特征和先前/持续疗法定义的。有活性PSA(招标关节计数(TJC)和肿胀关节计数(SJC)和TNFI-IR的方法随机2:1随机分配2:1,在第4周,第4周,然后每8周至第44周,或者在第44周或与Guselkumab 100 mg的16周(早期逃生)(计划)(计划)(计划)(计划)(计划)244(24(24))(244周)接收Guselkumab 100 mg。guselkumab对关节的影响(美国风湿病学院(ACR)20/50/70,肠炎,脑炎,脑炎),皮肤(牛皮癣区域和严重程度指数90/100,研究者的全球评估0/1),患者报道的脉络(PROS)(PROS)(PROS)(PROS)和慢性病治疗,健康疾病,健康疾病,慢性病,慢性病,治疗,健康疾病,慢性病,健康评估,慢性病,术语,慢性病,慢性病。通过基线患者年龄,性别,体重指数,SJC,TJC,PSA持续时间,%身体表面积,C反应性蛋白质,疼痛视觉模拟量表,先前的TNFI和先前的TNFI和不连续的原因以及常规的合成疾病 - 疾病 - 疾病 - 抗病抗抗病药物的状态来评估措施(PSA疾病活性评分较低的疾病活性,最少的疾病活动))评估。结果仅是描述性的。结果基线特征在Guselkumab(n = 189)和安慰剂(n = 96)组之间相似。在所有亚组中都观察到了Guselkumab比安慰剂比安慰剂比安慰剂的益处(主要终点; 50%vs 28%)和ACR 50(23%vs 8%)响应。此外,Guselkumab组的响应率在几乎所有亚组中的第24周到第48周之间都提高了。在第24周和通过各种临床结果中观察到相似的反应模式。结论Guselkumab每8周都会通过关节,皮肤,Pro和
摘要分析CS/HB 201于2024年2月15日通过了房屋,随后于2024年3月5日通过了参议院。美国有3800万人被诊断出患有糖尿病,其中包括佛罗里达州超过200万人。糖尿病发生时,由于个人无法有效产生或加工胰岛素,血糖(也称为血糖)太高了。随着时间的流逝,高血糖会导致以下问题:心脏病,中风,肾脏疾病,眼睛问题,牙齿疾病,神经损伤,脚部问题,抑郁症,睡眠呼吸暂停以及性和膀胱问题。糖尿病患者必须服用胰岛素以降低血糖水平。不同类型的胰岛素开始以不同的速度工作,并且每个胰岛素的效果持续了不同的时间。如果药剂师收到胰岛素处方补充的请求,但无法轻易从处方者那里获得补充授权,现行法律允许药剂师将一瓶胰岛素的一次性紧急补充送出。但是,现行法律不授权药剂师作为紧急处方补充的一部分分配胰岛素相关的用品或设备,而一只小瓶可能不足以满足某些患者的紧急需求。CS/HB 201通过消除单胎限制和一次性限制来扩大权力,以分配紧急胰岛素的紧急补充。该法案允许药剂师分配足够的胰岛素,直到患者可以从其初级保健医师那里获得当前的处方订单为止。该法案对州或地方政府没有财政影响。该法案允许药剂师每人每年的每年日历年度最多三次不连续的胰岛素的紧急补充。,如果药剂师无法轻易从处方者那里获得补充授权,则该法案还授权药剂师分配紧急补充胰岛素相关用品或设备。该法案允许药剂师分配紧急补充与胰岛素相关的用品或设备,每个患者最多三次非连续次。该法案于2024年4月11日由州长批准。2024-79,L.O.F.,并将在2024年7月1日生效。
摘要。选择风电场布局优化方法很困难。由于难以准确重现目标函数,因此不同论文中优化方法之间的比较可能不确定。如果作者没有使用每种算法的经验,那么一篇论文中只有几位作者的比较可能不确定。在这项工作中,我们为风电场布局优化案例研究提供了算法比较,这些比较由开发这些算法或有其他使用经验的研究人员应用或指导的八种优化方法。我们向每位研究人员提供了目标函数,以避免由于目标函数的差异而导致相对性能的歧义。虽然这些比较并不完美,但我们试图通过让有使用每种算法经验的研究人员应用每种算法并提供一个共同的目标函数进行分析,更公平地对待每种算法。该案例研究来自国际能源协会 (IEA) Wind Task 37,基于拥有 81 台涡轮机的 Borssele III 和 IV 风电场。本案例研究中特别令人感兴趣的是存在不连续的边界区域和凹边界特征。所研究的优化方法代表了广泛的方法,包括无梯度、基于梯度和混合方法;离散和连续问题公式;单次运行和多次启动方法;以及数学和启发式算法。我们为每种优化方法提供描述和参考(如适用),以及优缺点列表,以帮助读者确定适合其用例的方法。所有优化方法的表现都相似,优化后的尾流损失值在 15.48% 到 15.70% 之间,而未优化的布局为 17.28%。发现的每种布局都不同,但所有布局都表现出相似的特征。所有布局的相似之处包括沿外边界紧密排列风力涡轮机、在内部区域松散排列涡轮机以及为每个离散边界区域分配相似数量的涡轮机。使用一种新的顺序分配方法,即基于离散探索的优化 (DEBO),找到了按年能量产量 (AEP) 计算的最佳布局。根据本研究的结果,使用优化算法似乎可以显著提高风电场的性能,但有许多优化方法只要正确应用,就可以在风电场布局优化问题上表现良好。
超明显点模式可以通过超均匀缩放指数α> 0进行分类,该指数α> 0,该指数符合结构因子s(k)的幂律缩放行为,这是波数k。| K |在起源附近,例如s(k)〜| K | α在s(k)随着k连续变化为k→0。在本文中,我们表明可传播性是确定s(k)不连续的准膜系统的有效方法,并由一组密集的bragg峰组成。它已在[Phys。修订版e 104,054102(2021)],对于有限α的培养基,可以将过剩可传播性s(∞)-s(t)的长时间行为拟合到形式t - (d-α) / 2的幂定律中,在其中d是空间维度,以准确提取α,以使α准确提取α。我们首先将准二极管和极限 - 周期点模式转换为两相介质,通过将它们映射到相同的非重叠磁盘的包装上,其中与磁盘的空间内部代表一个相位,并且在其外部空间代表了第二阶段。然后,我们计算包装的光谱密度〜χv(k),并最终计算其多余的散布性的长期行为。特别是我们表明,多余的传播性可用于准确提取一维(1D)极限 - 周期性倍加倍链(α= 1)和1D Quasicrystalline fibonacci链(α= 3)至0。02%的分析已知的确切结果。此外,我们获得α= 5的值。97±0。06对于二维penrose瓷砖,并提出了合理的理论参数,强烈表明α完全等于六个。我们还表明,由于此处检查的结构的自相似性,可以截断用于计算散布性并获得α准确值的散射信息的小k区域,并且与未截断的情况下的偏差很小,该案例随着系统尺寸的增加而降低。这强烈表明,可以从适度尺寸的有限样品中获得α的良好估计。此处描述的方法提供了一个简单而通用的过程,可以准确表征Quasrystalline中存在的大规模翻译顺序,并在任何自相似的空间维度中都具有极限 - 周期介质。此外,从编码〜χV(k)中编码的这些两相介质中提取的散射信息可用于估计其物理性质,例如它们的有效动态介电常数,有效的动态弹性常数和流动性。