空气阻力又称气动阻力,在高速运动中对运动员的动作有很大的影响。以滑雪运动而言,在滑雪场滑雪过程中,场地的风环境对滑雪者的身体产生推力或拖力,滑行速度和抗阻功受风的影响很大,如何减小风阻功是运动科学的研究重点。本研究对滑雪者实体模型进行了风洞实验。首先对某滑雪者身体进行非接触式三维测量,并扫描打印若干滑雪者模型;然后在黑龙江省亚布力滑雪训练基地针对该滑雪者典型的运动姿势进行风洞实验,研究滑雪过程中空气阻力系数与风速的关系。结果表明:滑雪过程中阻力系数不随风速而变化。滑雪运动员的身高、滑雪姿势、迎风面迎风面积等参数对阻力系数有一定的影响,滑雪运动员身高越高,阻力系数越大。本文总结出的规律可供运动员在训练中采取合理的战术、优化滑雪姿势,从而提高比赛成绩。
首先,该法规通常允许CPUC“采用新的或扩大现有的固定费用,目的是为了收取向住宅客户提供电气服务的合理固定成本的目的,”,并特别要求委员会授权默认住宅费率固定费用”委员会尚未确切确定将哪些费用纳入新的固定费用中,但应根据客户的能源使用而不会有所不同。党派的主要投资者拥有的公用事业的评论敦促委员会采用不随使用而变化的所有费用的固定清单,这些成本将“构成现有的固定成本类别的宇宙,这些固定成本类别有资格在收入授予的固定费用中获得潜在的包容性”。加利福尼亚公共倡导者办公室的政党评论建议,这些费用“应包括但不限于;边际客户访问成本,非界限分销成本,与公共用途相关的费用以及与野火相关的费用。”塞拉俱乐部和加利福尼亚环境司法联盟提供了具体的指控建议,例如核退役的成本,PG&E的能源成本恢复金额以及确保紧急情况准备和弹性的各种成本(例如野火基金不可用的费用和野火训练费用)。
低功耗CMOS工艺 OUT输出口耐压24V VDD内置5V稳压管,串联电阻后支持6-24V电压 15mA固定恒流输出 PWM亮度控制电路,256级亮度控制 精确的电流输出值 最大误差(通道间):±3% 最大误差(芯片间):±5% 单线串行级联接口 单线两通道串行级联接口:芯片数据接口可以通过命令配置DI或者FDI引脚输入,正常模式下输入接口互相切换,DI工作模式下DI引脚输入数据,FDI工作模式下FDI引脚输入数据,D0引脚转发级联数据,该信号不会因为某一芯片的异常而影响其它芯片的正常工作 振荡方式:内置RC振荡,根据数据线上的信号进行时钟同步,在接收到当前单元的数据后自动重新生成后续数据并通过数据输出端送到下一级,信号不随级联距离的增大而失真或衰减 内置上电复位电路,上电复位后所有寄存器均清零初始化 数据传输速率800KHz 封装方式:SOP8和SOT23-8
恒定面积抛物面天线和反射镜的远场角波束宽度与发射信号的波长成正比。因此,天线或透镜的发射信号功率分布在与波长平方成正比的立体角上,即到达接收器的信号功率与频率平方成正比。对于给定的发射孔径尺寸,频率越高,到达接收器的信号功率越大。接收器噪声也会随着频率的增加而增加。在光频率下,与频率成正比的量子噪声占主导地位。在射频下,量子噪声微不足道:其他不随频率强烈变化的噪声源占主导地位。因此,首先,接收器噪声与频率成正比。由于接收信号功率与频率平方成正比,接收器信噪比 (SNR) 与频率成正比。无差错通信的最大可能速率会随着接收的 SNR 而增加。这是光通信的主要优势。迄今为止,NASA 使用的最高下行射频通信频率是深空 Ka 波段下行频率 32 千兆赫 (GHz)。典型的下行光波长为 1550 纳米 (nm),相当于 193.5 太赫兹 (THz) 的频率。因此,光与射频频率之比为 193.5 THz/32 GHz,约为 6000。在其他所有条件相同的情况下,1550 nm 光通信系统的接收器 SNR 有可能比 Ka 波段系统高 6000 倍。
弹性体在声学应用方面有着悠久的历史。这种用途包括阻止声音通过的解耦器、衰减声音反射的消声涂层和传输声波的声学窗。橡胶成为水下声学的首选材料有几个原因。其中最重要的一个是橡胶的声阻抗可以与海水的声阻抗相匹配。在边界上,如果两种介质的声阻抗相等,则不会反射声波。1 声阻抗类似于光学折射率,由材料的质量密度和材料内部声音速度的乘积给出。对于低损耗材料,后者的量与密度和模量(纵波的体积模量或剪切波的剪切模量)之比的平方根成正比。显然,通过聚合物选择和化合物配方,可以在很宽的范围内改变橡胶的声阻抗及其频率依赖性。大多数商业材料都是专有的,尽管声学特性数据汇编是可用的。2 对于填充橡胶,机械响应是强烈非线性的。3 然而,在低于约 10 -3 应变幅度时,动态模量变得不随应变而变化(需要更高的应变才能观察到佩恩效应)。4 由于声波通过橡胶传播引起的变形非常小(通常应变幅度≤10 -6),因此可以通过传统的小应变动态机械测量来表征声学特性。5
(C0) 从脑叶共聚焦延时图像序列中可以看到,一个典型的 NB 分裂个体。NB 以洋红色箭头勾勒(白色虚线),以青色箭头表示后代(GMC)。(C00)培养的 L3 脑的 NB 分裂率图显示,在成像条件下,NB 的分裂率在至少 22 小时内没有显著下降(n = 3 个脑,不显著(ns),p=0.87,单因素方差分析),该数据是通过测量细胞周期长度计算得出的。(D0)完整幼虫脑中的典型 GMC 分裂。第一行面板显示分裂的 NB(洋红色箭头,白色虚线轮廓)产生 GMC(青色箭头)。第二行面板,GMC 在接下来的 6 到 8 小时内被后续的 NB 分裂所取代,位移路径以黄色虚线箭头表示。最后两幅图(10 至 18 分钟)显示 GMC 的分裂(绿色箭头,子代黄色箭头)。(D 00)图表显示体外脑中 GMC 分裂的速率不随培养时间而变化(n = 4 个脑,ns,p=0.34,单向方差分析),该速率是根据 4 小时内 GMC 分裂事件的数量计算得出的。图上的误差线为标准差。比例尺(B)50 毫米;(C),(D)10 毫米。
摘要 小鼠大脑是迄今为止研究最深入的哺乳动物大脑,但其细胞结构的基本测量方法仍然不清楚。例如,量化细胞数量以及性别、品系和细胞密度和体积的个体差异之间的相互作用对于许多区域而言是遥不可及的。Allen 小鼠大脑连接项目生成了数百个大脑的高分辨率全脑图像。虽然这些图像是为了不同的目的而创建的,但它们揭示了神经解剖学和细胞结构的细节。在这里,我们使用这个群体系统地表征小鼠大脑中每个解剖单元的细胞密度和体积。我们开发了一种基于 DNN 的分割流程,该流程使用图像的自发荧光强度来分割细胞核,即使在最密集的区域(例如齿状回)内也是如此。我们将我们的流程应用于来自 C57BL/6J 和 FVB.CD1 品系的 507 个雄性和雌性大脑。从全球来看,我们发现整体脑容量的增加不会导致所有区域的均匀扩张。此外,特定区域的密度变化通常与该区域的体积呈负相关;因此,细胞计数并不随体积线性变化。许多区域(包括多个皮质区域的 2/3 层)表现出明显的横向偏差。我们确定了特定于菌株或特定于性别的差异。例如,男性往往在扩展的杏仁核和下丘脑区域(MEA、BST、BLA、BMA 和 LPO、AHN)中拥有更多细胞,而女性在眼眶皮质 (ORB) 中拥有更多细胞。然而,个体间变异性始终大于单个限定词的效应大小。我们将此分析的结果作为社区的可访问资源提供。
Powersoft 是高效音频电源管理领域的领先公司。全新的 Powersoft DIGAM(数字放大器)技术改变了世界对专业音频放大的看法。对于需要高功率和长期可靠性的应用,没有其他放大器能与之媲美。由于热量输出惊人减少、重量减轻以及特有的高输出功率,DIGAM 放大器可用于无限范围的应用,例如巡回演唱会、歌剧院、剧院、教堂、电影院、主题公园、电视音场和工业应用。声音更大,重量更轻 与传统放大器相比,Powersoft DIGAM 技术效率极高,可为扬声器提供更多功率,同时大大减少散热。更高的效率可以减小尺寸、重量和功耗。放大器的输出级通常以 95% 的效率运行,仅将 5% 的输入能量以热量形式耗散。最有趣的特性之一是 DIGAM 的效率几乎与输出水平无关。传统放大器仅在满额定功率输出时才能达到最佳效率。由于标准音乐的平均功率密度为最大水平的 40%,因此传统放大器在相同音量下很容易产生比 DIGAM 多 10 倍的热量。卓越的声音-声波精度 清晰的高音和紧密、明确的低音:最精确的音频信号再现。专利设计功能确保在失真、频率响应、斜率、功率带宽和倾倒因子等参数方面具有非常高的性能。全数字化,可靠性高 DIGAM 系列基于 PWM 技术,该技术已在电源和逆变器中使用了 30 多年。PWM 具有高可靠性、小尺寸、轻重量和高效率的特点。PWM 转换器用作高频采样器,将可变幅度(音频)信号转换为平均值等于音频输入的脉冲序列。DIGAM 放大器使用非常高的采样频率来获得整个音频带的高性能。Powersoft 拥有 DIGAM 技术的多项专利。最适合您电源的放大器 Powersoft 是第一家使用功率因数校正的放大器制造商。该技术的另一大优势是其性能在很大程度上不受电源电压的影响。此独特功能可确保向主电源提供主要的电阻负载,从而最大限度地减少电流失真和电压/电流位移,从而大大提高放大器在高输出水平下的性能,并避免标准和开关电源常见的主电压崩溃。额定输出功率不随负载/线路条件而变化。