鳄梨 (Persea americana Mill.)是一种具有经济价值的植物,因为其果实脂肪酸含量高且风味独特。其脂肪酸含量,尤其是相对较高的不饱和脂肪酸含量,具有显著的健康益处。我们在此展示了西印度鳄梨的端粒到端粒无缝基因组组装 (841.6 Mb)。基因组包含 40 629 个预测的蛋白质编码基因。重复序列占基因组的 57.9%。值得注意的是,所有端粒、着丝粒和核仁组织区都包含在此基因组中。通过荧光原位杂交观察到这三个区域的片段。我们鉴定出 376 个潜在的抗病性相关核苷酸结合亮氨酸富集重复基因。这些基因通常聚集在染色体上,可能来自基因重复事件。五个 NLR 基因(Pa11g0262、Pa02g4855、Pa07g3139、Pa07g0383 和 Pa02g3196)在叶、茎和果实中高度表达,表明它们可能参与鳄梨在多种组织中的疾病反应。我们还鉴定出 128 个与脂肪酸生物合成相关的基因,并分析了它们在叶、茎和果实中的表达模式。Pa02g0113 编码 11 种介导 C18 不饱和脂肪酸合成的硬脂酰酰基载体蛋白去饱和酶之一,在叶子中的表达量高于在茎和果实中的表达量。这些发现提供了宝贵的见解,增强了我们对鳄梨脂肪酸生物合成的理解。
岩土技术和地理环境工程中的地下水流量问题涉及解决pde的部分微分方程的解决方案。必须为所有“有限元素”求解PDE,当组合时形成“连续性”(或问题的几何形状)。以数学形式表达的地下水流理论包含材料的物理行为(例如,本构定律)和物理学的保守定律(即能量保护)。许多材料(尤其是不饱和土壤)的物理行为是非线性的,因此,PDE在特征上变为非线性。众所周知,非线性PDE的解决方案可以为数值建模带来挑战。理论手册的目的是为用户提供有关PDE的理论表述以及解决方案中使用的数值方法的详细信息。理论手册的目的不是提供与地下水流有关的所有理论的详尽摘要。相反,目的是清楚地描述地下水软件中使用的理论的细节。通用有限元求解器解决了地下水流的部分微分方程。求解器算法已经实施了可以容纳线性和高度非线性PDE的尖端数值解决方案技术。解决方案技术利用自适应时间步骤算法和自动设计的网格生成。这些高级数值技术的应用对于解决高度非线性和复杂问题特别有价值。最常见的是,土壤连续体的不饱和土壤部分带来了非线性土壤行为。高级求解器使得对于以前无法解决的许多问题获得了融合和准确的解决方案。解决方案过程的主要属性如下:
第3-4周: - ((醛和酮)添加•藻类和酮的物理特性•醛酸和酮的酸度(? - 氢酸度)•aldheydes的制备•酮酮的制备•酮组的特征•carbonyl and ket in carboylic and ket intepitivity•carbonigitivity•carbonigientive•ket hepitivity•相对性化的反应性•ketone•ketone•亲核添加反应a。用水[Geminal Diols)] b。与HCN [氰基氢素形成] c。与grignard试剂[酒精形成] d。与酒精[半和乙酰形成] e。与原代胺[亚胺形成] f。与次级胺[烯胺形成] g。与酸性培养基中的氢嗪[氢援助形成] h。基本介质中的hildrazine''''''''''''''''''''''''''''''''''Wolff-kishner反应[Alkane组] i。 与羟胺[Oxime形成]J。 含半迦济[半谷唑组] k。与氢化物[酒精形成] l。与磷的“ Wittig反应” [烯烃形成] m。 NaOH“ cannizzaro反应” [不占比例的产物]•对?,? - 不饱和羰基的添加•某些生物亲核添加反应•药物合成•包括亲核添加反应•含有醛和含有药物的药物与HCN [氰基氢素形成] c。与grignard试剂[酒精形成] d。与酒精[半和乙酰形成] e。与原代胺[亚胺形成] f。与次级胺[烯胺形成] g。与酸性培养基中的氢嗪[氢援助形成] h。基本介质中的hildrazine''''''''''''''''''''''''''''''''''Wolff-kishner反应[Alkane组] i。与羟胺[Oxime形成]J。 含半迦济[半谷唑组] k。与氢化物[酒精形成] l。与磷的“ Wittig反应” [烯烃形成] m。 NaOH“ cannizzaro反应” [不占比例的产物]•对?,? - 不饱和羰基的添加•某些生物亲核添加反应•药物合成•包括亲核添加反应•含有醛和含有药物的药物与羟胺[Oxime形成]J。含半迦济[半谷唑组] k。与氢化物[酒精形成] l。与磷的“ Wittig反应” [烯烃形成] m。 NaOH“ cannizzaro反应” [不占比例的产物]•对?,? - 不饱和羰基的添加•某些生物亲核添加反应•药物合成•包括亲核添加反应•含有醛和含有药物的药物
iMD 的工作原理是基于使用来自压缩机的热压缩空气来再生干燥剂。单个压力容器分为两个部分:干燥(75%)和再生(25%)。浸渍在蜂窝状玻璃纤维滚筒上的干燥剂缓慢地旋转通过这两个部分。离开压缩机最后一级的热空气分为两股流,1 和 2。主流(分支 1)通过压缩机后的冷却器(在图像中不可见)并进入干燥器进行干燥。再生流(分支 2 - 热不饱和空气)用于干燥剂再生。它通过滚筒的再生部分,通过解吸去除水分并再生干燥剂。现在饱和的再生气流在再生冷却器 (3) 中冷却,然后与主流(分支 1)混合。
抽象的聚甲基丙烯酸酯(PMMA)基于光学波导是简单且低成本波导的良好候选者。但是,尚未探索热性能。工作的目的是研究基于PMMA的波导的热性能。波导制造过程是在三个阶段进行的,这些阶段正在对PMMA覆层,核心材料合成和核心材料应用到覆层进行构图。横截面面积为1×1 mm 2的核心图案刻在4厘米长的PMMA板上。不饱和聚酯树脂(UPR)用作核心材料。对温度依赖性损失(TDL),温度工作范围和长期暴露耐用性的表征。用于TDL表征,温度从30°C到75°C不等。同时,对于温度工作范围,波导暴露于循环加热。通过将波导在40°C的温度下浸入蒸馏水288小时来完成热耐用性表征。结果表明,由于温度变化,TDL为0.0235 dB/°C,输出强度的变化很小。温度的最大极限为70°C。长期暴露于40 O C的温度,结果表明波导的性能良好。可以得出结论,对于低于70 O C的温度,波导性能不会受到环境温度的强烈影响。需要进一步的研究以增强其热稳定性并进一步降低温度灵敏度。Jurnal Penelitian Fisika Dan Aplikasinya(JPFA)。关键字:波导;聚甲基丙烯酸酯(PMMA);不饱和聚酯树脂(UPR);热耐用性如何引用:Yulianti I,Insan SMK,Putra NMD,Purwinarko A,Widiarti N和Ngajikin NH。基于光甲基丙烯酸酯(PMMA)的光学波导的热耐用性表征。2024; 14(2):113-124。doi:https://doi.org/10.26740/jpfa.v14n2.p113-124。
其他抑制化合物•某些酚类化合物可以抑制MLF,例如某些凝结的单宁,而其他类花青素也可以刺激它们。•已知农药残留物会导致MLF的缓慢,卡住或完全抑制•如果不使用正确的抗抗性细菌,则高L-乳酸含量(如果雄性酸初始水平高)可能会抑制MLF的良好实现。•使用壳聚糖或奇质衍生的新溶液进行处理会扰乱MLF的良好开始或完全实现,具体取决于葡萄酒状况和治疗时机。•某些酵母菌菌株,尤其是当它们努力完成酒精发酵时,可以释放有毒的代谢产物,从而引起MLF问题。•中链不饱和脂肪酸也会对细菌的生长和活性产生负面影响。
MTSC 62460 液晶材料科学 2 学分(与 MTSC 72460 合并)让学生熟悉液晶科学的基本化学概念。这些概念包括液晶分子的结构和性质、化学不相容分子链段的可混合性规则和微观偏析、芳香族化合物(包括杂环和氟化芳族化合物)的物理和电子性质、脂肪族和全氟烃的性质、不饱和性和手性。本课程后面部分涵盖的其他方面涉及液晶设备中使用的辅助材料和新材料,例如聚合物、碳纳米材料、金属和半导体纳米颗粒以及光响应有机材料。先决条件:研究生学位。课程类型:讲座学时:2 讲座成绩模式:标准字母
最少处理的全谷物(例如糙米,小麦,拼写,大麦,小米,黑麦,玉米,荞麦)豆类(例如鹰嘴豆,扁豆,大豆,黑色,黑色,肾脏,肾脏,pinto,pinto,pinto,pinto,navy,cannellini,cannellini,adzuki,adzuki,adzuki,fava beans andernd nuts nuts nuts nuts nuts nuts nuts nuts,榛子,山核桃,澳洲坚果,巴西和松子);种子(例如亚麻籽,芝麻,向日葵,南瓜和奇亚种子);低血糖水果(例如草莓,覆盆子,黑莓,蓝莓,樱桃,猕猴桃,羽木,李子,桃子,苹果,苹果,葡萄柚,橙子);不饱和脂肪(例如,维尔金橄榄油,鳄梨)。
配备氢能储存系统 (HESS) 的发电厂,包括基于可再生能源 (RES) 的发电厂,是世界能源发展最有前景的领域之一 [1]。HESS 的关键要素是水电解器、氢气(有时是氧气)储存系统和燃料电池系统。水电解器利用一次电源的多余电能产生氢气(和氧气)。根据最终用户及其需求,生成的氢气可以以压缩形式、液化状态存储在各种载体上,例如金属氢化物、毛细管、微球和碳材料。不饱和烃的可逆加氢过程为安全储存和运输开辟了广阔的前景。一次电源电能的缺乏或缺失由燃料电池系统补偿,该系统将储存的氢气和氧气(来自氧气储存系统或空气)之间的反应化学能转换回电能。