新的咪唑-5-氮杂化合物的合成5 - (((e)-Benzylidene)-3-((4'-(((Z)-Phenyldiazenyl)) - [1,1,1'-二苯基] -4-4- ylive- 2-乙烯基)-3-乙烯基-3,5-二氢-4 h-imidazol-4--在此工作,并在此工作。α,β-β-不饱和羧酸与硫二酰氯化物作为起始材料的反应,导致(E)-4-苯乙烯-2-氯羟唑-5(4 h) - 一(化合物A3)在两个步骤中通过苯甲酰氨酸和苯二氮的芳族芳族含有苯甲酸盐和芳族的水分,然后在两个步骤中处理了苯甲酸盐和芳族的水中,并在水中含有芳族的水含量和水中的水。耦合反应。 通过FT-IR,1 H-NMR和13 C-NMR光谱法对合成化合物的特征进行了表征。 抗菌和抗氧化活性的研究表明,这些分子中的一些是作为潜在的抗菌和抗氧化剂的。 k e y w o r d sα,β-β-不饱和羧酸与硫二酰氯化物作为起始材料的反应,导致(E)-4-苯乙烯-2-氯羟唑-5(4 h) - 一(化合物A3)在两个步骤中通过苯甲酰氨酸和苯二氮的芳族芳族含有苯甲酸盐和芳族的水分,然后在两个步骤中处理了苯甲酸盐和芳族的水中,并在水中含有芳族的水含量和水中的水。耦合反应。通过FT-IR,1 H-NMR和13 C-NMR光谱法对合成化合物的特征进行了表征。抗菌和抗氧化活性的研究表明,这些分子中的一些是作为潜在的抗菌和抗氧化剂的。k e y w o r d s
矿床产生的气体通常包含各种类型的污染。它们是使用其使用的原因,通常使其使用不可能。因此,它需要适当的治疗。气体中的主要污染物之一是水[1,2]。蒸汽饱和度是与储层水的长时间气体接触的结果。这种蒸汽的含量取决于气体的成分或沉积水的盐含量。但是,这主要取决于沉积物的热力学条件,即温度和压力。压力越高并降低温度,气蒸气含量越高。当这两个参数发生变化时,与水蒸气相关的气体或气体的水量会变得不饱和[3,4]。水液化始于露点温度,这是必须在特定压力下以恒定的水蒸气浓度冷却气体以变为饱和蒸气的值。结果是,随着压力的增加,露点温度
基于碱性和碱性地球元素的lIthium后电池是更便宜的技术,其潜力有可能在过渡到更清洁和可持续的能源中的颠覆性变化,从而降低了对化石燃料的依赖。这项贡献涉及钠导电的无溶剂聚合物电解质对钠聚合物电池的发展和表征。通过α,ω-二羟基 - oligo(氧化乙烯)的多浓度与不饱和二甲酰基获得,其进一步的固化会导致无定形的网络电解质膜。在不同的O/Na比下使用NaClo 4和NACF 3 SO 3 SO 3,最佳的聚合物电解质达到90℃的阳离子电导率(σ +),超过1 ms cm -1,而保持机械完整性至少至少120°C. c.
二手食用油(UCO)是一个伞术,涵盖了所有二手植物油,动物脂肪和加工油,这些植物油,食品加工行业,酒店,餐馆,家庭烹饪或煎炸以及屠宰场废物已使用。无论其起源如何,所有油的主要成分都是甘油酸酯,饱和或不饱和脂肪酸和甘油的酯,伴随着水,颗粒和加工食品的残基。UCO并未归类为危险物品。但是,如果将其处置不当,例如,通过废水的水槽,由于油或脂肪的凝固,排水系统可能会受到堵塞的负面影响。,如果用过的油与其他“固体废物”一起形成巨大的团块,即所谓的Fatbergs,则可能会发生更糟糕的情况。这通常会导致污水管完全阻塞。我们水域中有机污染的20%以上可以是
1。牙科学院,Thi-Qar大学,Thi-qar,64001,伊拉克2。 Thi-Qar大学理学院化学系,Thi-Qar,64001,伊拉克3。 工程学院,Thi-Qar大学,Thi-Qar,64001,伊拉克 *通讯作者的电子邮件:assa.sayar@sci.utq.utq.utq.utq.utq.utq.iq Abstract Biododiesel,来自可再生资源的摘要生物柴油是支持能源安全的可能替代方案之一。 这项研究旨在通过直接式静止化从卵藻和鸭藻植物中生产生物柴油。 为所考虑的鸭植物取了5 g的干生物量,并将藻类浸入50 mL甲醇中:盐酸:氯仿:氯仿(10:1:1 v/v/v/v)溶剂溶剂以提取脂肪酸甲基酯(FAME)。 使用FT-IR和GC-MAS光谱法进行提取的材料进行表征。 准备了准备的样品,以鉴定化合物,特别是脂质。 结果表明,在形成的酯(生物柴油)中存在饱和和不饱和脂肪酸。 在衍生自鸭植物的生物柴油中鉴定出的饱和脂肪酸和不饱和脂肪酸分别为24.19%和20.34%,藻类分别为19.92%和17.2%。 这些结果表明,从这些类型的生物量中产生生物柴油的潜力很高,这可以为能源供应提供另一种途径。 关键字:生物柴油,odogonium,Duckweed,Direct Transesterification,脂肪酸甲基酯。 文章类型:研究文章。 2020a)。 可再生资源可以提供可行的途径来解决常规能源缺陷(Sayer等人牙科学院,Thi-Qar大学,Thi-qar,64001,伊拉克2。Thi-Qar大学理学院化学系,Thi-Qar,64001,伊拉克3。 工程学院,Thi-Qar大学,Thi-Qar,64001,伊拉克 *通讯作者的电子邮件:assa.sayar@sci.utq.utq.utq.utq.utq.utq.iq Abstract Biododiesel,来自可再生资源的摘要生物柴油是支持能源安全的可能替代方案之一。 这项研究旨在通过直接式静止化从卵藻和鸭藻植物中生产生物柴油。 为所考虑的鸭植物取了5 g的干生物量,并将藻类浸入50 mL甲醇中:盐酸:氯仿:氯仿(10:1:1 v/v/v/v)溶剂溶剂以提取脂肪酸甲基酯(FAME)。 使用FT-IR和GC-MAS光谱法进行提取的材料进行表征。 准备了准备的样品,以鉴定化合物,特别是脂质。 结果表明,在形成的酯(生物柴油)中存在饱和和不饱和脂肪酸。 在衍生自鸭植物的生物柴油中鉴定出的饱和脂肪酸和不饱和脂肪酸分别为24.19%和20.34%,藻类分别为19.92%和17.2%。 这些结果表明,从这些类型的生物量中产生生物柴油的潜力很高,这可以为能源供应提供另一种途径。 关键字:生物柴油,odogonium,Duckweed,Direct Transesterification,脂肪酸甲基酯。 文章类型:研究文章。 2020a)。 可再生资源可以提供可行的途径来解决常规能源缺陷(Sayer等人Thi-Qar大学理学院化学系,Thi-Qar,64001,伊拉克3。工程学院,Thi-Qar大学,Thi-Qar,64001,伊拉克 *通讯作者的电子邮件:assa.sayar@sci.utq.utq.utq.utq.utq.utq.iq Abstract Biododiesel,来自可再生资源的摘要生物柴油是支持能源安全的可能替代方案之一。 这项研究旨在通过直接式静止化从卵藻和鸭藻植物中生产生物柴油。 为所考虑的鸭植物取了5 g的干生物量,并将藻类浸入50 mL甲醇中:盐酸:氯仿:氯仿(10:1:1 v/v/v/v)溶剂溶剂以提取脂肪酸甲基酯(FAME)。 使用FT-IR和GC-MAS光谱法进行提取的材料进行表征。 准备了准备的样品,以鉴定化合物,特别是脂质。 结果表明,在形成的酯(生物柴油)中存在饱和和不饱和脂肪酸。 在衍生自鸭植物的生物柴油中鉴定出的饱和脂肪酸和不饱和脂肪酸分别为24.19%和20.34%,藻类分别为19.92%和17.2%。 这些结果表明,从这些类型的生物量中产生生物柴油的潜力很高,这可以为能源供应提供另一种途径。 关键字:生物柴油,odogonium,Duckweed,Direct Transesterification,脂肪酸甲基酯。 文章类型:研究文章。 2020a)。 可再生资源可以提供可行的途径来解决常规能源缺陷(Sayer等人工程学院,Thi-Qar大学,Thi-Qar,64001,伊拉克 *通讯作者的电子邮件:assa.sayar@sci.utq.utq.utq.utq.utq.utq.iq Abstract Biododiesel,来自可再生资源的摘要生物柴油是支持能源安全的可能替代方案之一。这项研究旨在通过直接式静止化从卵藻和鸭藻植物中生产生物柴油。为所考虑的鸭植物取了5 g的干生物量,并将藻类浸入50 mL甲醇中:盐酸:氯仿:氯仿(10:1:1 v/v/v/v)溶剂溶剂以提取脂肪酸甲基酯(FAME)。使用FT-IR和GC-MAS光谱法进行提取的材料进行表征。准备了准备的样品,以鉴定化合物,特别是脂质。结果表明,在形成的酯(生物柴油)中存在饱和和不饱和脂肪酸。在衍生自鸭植物的生物柴油中鉴定出的饱和脂肪酸和不饱和脂肪酸分别为24.19%和20.34%,藻类分别为19.92%和17.2%。这些结果表明,从这些类型的生物量中产生生物柴油的潜力很高,这可以为能源供应提供另一种途径。关键字:生物柴油,odogonium,Duckweed,Direct Transesterification,脂肪酸甲基酯。文章类型:研究文章。2020a)。可再生资源可以提供可行的途径来解决常规能源缺陷(Sayer等人引言能源需求的持续增加以及政治冲突,污染损害和全球变暖的增加造成了压力,以寻找替代煤炭,石油和石油衍生品代表的传统能源资源的替代方案。此外,耗尽了常规燃料(化石燃料)和强迫研究以调查替代能源以节省全球经济和环境(Ethaib等人2020)。生物燃料已成为有希望的替代能源。是第一代生物燃料,生物乙醇和生物柴油的是由食品原料产生的,例如淀粉,糖和从玉米,小麦和大豆等农作物植物中得出的油(Neto等人。 2019)。 使用食物作物原料来产生生物燃料,触发辩论以在燃料和食物之间进行选择(Alaswad等人。 2015)。 此外,要创造足够的生物质,粮食作物原料需要巨大的农业区域,这可能导致土地破坏,生物多样性损失,栖息地损失,水耗尽和空气污染(Neto等人(Neto等人) 2019)。 因此,该研究指示使用草,木材,木质纤维素生物量和其他有机废物生产非食品作物的生物燃料,这被称为第二代生物燃料。 木质纤维素材料的复杂结构需要一个预处理过程,以便在水解过程中有效转化(Ethaib等人 2020b)。 已经应用了各种各样的预处理过程。 但是,大多数这些过程都遇到了技术困难,最终反映了最终产品的成本(Ethaib等人是由食品原料产生的,例如淀粉,糖和从玉米,小麦和大豆等农作物植物中得出的油(Neto等人。2019)。使用食物作物原料来产生生物燃料,触发辩论以在燃料和食物之间进行选择(Alaswad等人。2015)。此外,要创造足够的生物质,粮食作物原料需要巨大的农业区域,这可能导致土地破坏,生物多样性损失,栖息地损失,水耗尽和空气污染(Neto等人(Neto等人)2019)。因此,该研究指示使用草,木材,木质纤维素生物量和其他有机废物生产非食品作物的生物燃料,这被称为第二代生物燃料。木质纤维素材料的复杂结构需要一个预处理过程,以便在水解过程中有效转化(Ethaib等人2020b)。已经应用了各种各样的预处理过程。但是,大多数这些过程都遇到了技术困难,最终反映了最终产品的成本(Ethaib等人2020c)。在寻找可行且具有成本效益的替代方案时,藻类和藻类衍生的生物质得到了相当大的关注或生产改进的生物燃料(Gajraj等人)2018)。使用藻类
蛋白质是在肉类,鱼,家禽,乳制品,豆类,豌豆,小扁豆和大豆产品等食物中发现的营养素。蛋白质不会直接升高您的血糖,但有些蛋白质食品中含有碳水化合物。脂肪是一种营养素,主要是在较高的脂肪和乳制品,油,坚果和种子,黄油,人造黄油,炸食品,巧克力,零食等零食和商店购买的烘焙产品的情况下发现的。脂肪不会增加您的血糖,但是在一些碳水化合物的食物中可以发现脂肪,这些食物确实会增加您的血糖。饮食中的脂肪过多可能会影响胰岛素如何控制血糖。选择不饱和脂肪,例如橄榄,低芥酸菜籽,花生,向日葵油或柔软的人造黄油。限制饱和脂肪,例如黄油,猪油或高脂肪加工肉。
抗臭氧剂是能够阻碍或减缓臭氧诱导降解的物质。臭氧自然存在于空气中,浓度极低,具有高反应性,尤其对不饱和聚合物反应剧烈,会导致臭氧裂解。臭氧分解需要一类独特的抗氧化稳定剂,通常以对苯二胺为基础。这些抗臭氧剂与臭氧的反应速度比臭氧与聚合物中易受损伤的官能团(通常是烯烃基团)的反应速度更快。它们之所以能做到这一点,是因为它们具有较低的电离能,能够通过电子转移与臭氧结合。这种转变会产生自由基阳离子,并通过芳香性进行稳定。这些物质保持活性并继续反应,生成1,4-苯醌、苯二胺二聚体和氨氧基自由基等产物[66- 67]。
素食主义是一种饮食模式,可以免除一种类型的肉(可以细分为饮食的不同的catechorías,例如乳酸诺克抗素食主义,即乳制品和鸡蛋的消费,或纯素食,或者完全限于基于产物的营养,这是基于产物Sees Sees Sees Sees 1。 diveals 1。在西方社会中,由于动物,伦理,宗教,经济,健康和/或环境问题1-3,近年来,对素食饮食的兴趣增加了2。 div>各种脱节学研究已经确定了饮食的好处,因为它们的宏观和微量营养素含量很高,例如:蔬菜纤维,叶酸(维生素B 9),维生素C和E,维生素C和E,钾,镁,化学含量,化学含量,不饱和脂肪酸和抗抗毒性酸盐和抗抗氧化剂,然而,素食饮食的某些必需营养素浓度较低,例如蛋白质,铁或维生素B 12 5。 div>
目前的立场和联系信息:环境和农业化学教授Nutrien杰出的农业科学学者C-017植物科学植物科学大楼土壤与作物科学系在化学部联合职位的CIV中的联合职位。&环境工程科罗拉多州立大学堡柯林斯堡,CO 80523-1170,美国电话:(970)491-6235电子邮件:thomas.borch@colostate.edu home页面:http:///borborch.agsci.colostate.edu Google School: https://scholar.google.com/citation?生物地球化学,斯坦福大学,2004年1月至2006年1月。研究主题:铁,养分和微量金属的生物地球化学循环。导师:Scott Fendorf博士。Ph.D. ,环境土壤化学,蒙大拿州立大学,2004年5月。 论文:色谱,光谱和显微镜分析揭示了铁氧化铁和电子班车对发酵细菌2,4,6-三硝基醇(TNT)降解途径的影响。 顾问:William P. Inskeep M.Sc.博士 ,哥本哈根大学环境化学,1999年12月。 论文:不饱和土壤中挥发性氯化脂肪族的降解。 顾问:Bo Svensmark博士。 B.Sc. ,哥本哈根大学环境化学,1997年10月。 论文:DOC对湿地中硝酸盐清除的定量和定性影响。 顾问:Bo Svensmark博士。Ph.D. ,环境土壤化学,蒙大拿州立大学,2004年5月。论文:色谱,光谱和显微镜分析揭示了铁氧化铁和电子班车对发酵细菌2,4,6-三硝基醇(TNT)降解途径的影响。顾问:William P. Inskeep M.Sc.博士,哥本哈根大学环境化学,1999年12月。论文:不饱和土壤中挥发性氯化脂肪族的降解。顾问:Bo Svensmark博士。B.Sc. ,哥本哈根大学环境化学,1997年10月。 论文:DOC对湿地中硝酸盐清除的定量和定性影响。 顾问:Bo Svensmark博士。B.Sc.,哥本哈根大学环境化学,1997年10月。论文:DOC对湿地中硝酸盐清除的定量和定性影响。顾问:Bo Svensmark博士。
电池浸没在搅拌恒温水浴中,在实验过程中,水浴温度以 5 ø 为间隔从 5 ø 变化到 30øC。氮气供应通过浸没在水浴中的玻璃烧结起泡器,以在进入电池之前使其充满水蒸气。使用放置在靠近电池中心的井中的热电偶传感器监测电池的温度。DMS 通过一个装有液态 DMS(纯度 >99%,Aldrich,威斯康星州密尔沃基)的小玻璃球进入室 1。因此,电池这一侧的浓度相对于纯 DMS 略微不饱和。对于甲烷运行,移除玻璃球,将纯气体(纯度 99.0%,Liquid Carbonic,伊利诺伊州芝加哥)引入鼓泡器代替氮气。在实验过程中,膜的高浓度侧和低浓度侧分别使用 10 cm3 min- • 和 20 cm3 min- • 的气体流速。