马尔可夫决策过程使代理商与其环境之间的非确定性相互作用在可拖动的随机框架内进行建模。每次代理人观察当前状态,并采取行动,从而立即获得奖励。当时代理的目标是优化其预期的累积奖励。在数学上,马尔可夫决策问题是基于动态编程原则解决的,其框架是许多强化学习算法的基础,例如,例如Q-学习算法。有关马尔可夫决策过程的理论,请参见[5,10,25,26],以及[1,6,7,11,11,12,15,20,29,33]有关其应用,尤其是在强化学习领域。在马尔可夫决策问题的经典设置中,给出了基础马尔可夫决策过程的过渡概率的过渡内核。从经济上讲,这意味着代理具有对基本过程的真实分布的了解,这通常在实践中不能做出理由。为了解决这个问题,学者们最近引入了马尔可夫决策问题的强大版本,以说明假定的潜在概率内核可能的误约
预测聚合结合了多个预测者的预测以提高准确性。但是,缺乏有关预测者信息结构的知识阻碍了最佳聚集。鉴于一系列信息结构,强大的预测汇总旨在与无所不知的聚合器相比,以最小的最坏情况遗憾找到聚合器。鲁棒预测的先前方法依赖于启发式观察和参数调整。我们提出了一个算法框架,用于鲁棒预测聚合。我们的框架提供了有限的信息结构家族的一般信息聚合的有效近似方案。在Arieli等人考虑的设置中。(2018),如果两个代理在二元状态下接收独立的信号,我们的框架还通过对固定器或代理报告中的分离条件施加Lipschitz条件来提供有效的近似方案。数值实验通过在Arieli等人考虑的设置中提供几乎最佳的聚合器来证明我们方法的有效性。(2018)。
l9kml9a“ be”''b®'»««««n»«n» «n·»µ´´´´´´s»{ ^\\ ^´´´´´´´±»fg],».- .-/fg] t |
I。虽然早期空间任务不需要精确,但现代应用,例如卫星维修和维护,可重复使用的发射车,洲际弹道导弹指导和拦截以及一些卫星到卫星通信,需要精确的位置和速度信息。全球导航卫星系统(GNSS),例如美国的全球定位系统(GPS),可用于在地球表面和低地球轨道(LEO)上进行精确定位。[1]但是,当前的GNSS系统使用少量,复杂且昂贵的卫星,这些卫星无法修复或及时更换,这意味着仅禁用少数卫星可以在大面积上破坏该系统。低接收的功率和涉及的长距离也意味着GNSS容易受到信号spoo fifg和jamming的影响。[2]面对扩散的反卫星武器和电子战系统,政府和商业实体寻求一种替代的太空导航方法可能是优先事项,该方法对对手的干扰更为强大。现有的GNSS替代方法是使用基于地面的跟踪。但是,雷达和光学信号会受到大气扭曲的影响,从而降低了位置精度。使用扩展的集成时间的持久跟踪可以克服大气变形,但这不适用于指导短时间操作。地面跟踪也受到对抗性破坏的约束。此外,单个地面站的有限视图意味着在整个轨道或轨迹中进行持续跟踪需要一个大型网络,并且在有争议或偏远地区的地球区域可能无法进行跟踪。地面数据必须从电台的分布式网络汇总,并迅速传输到车辆,在此期间,它可能会受到干扰,spoofig或其他干扰。我们引入了一种更强大的空间导航方法,该方法使用对位置纤维的自主多材料,或用大地测量的语言进行基准测试。这个
摘要 — 本文介绍了一种用于高空长航时 (HALE) 飞机的鲁棒路径跟踪控制器。操作 HALE 飞机的主要控制范例包括基本路径跟踪控制,即在处理非常有限的推力时跟踪参考飞行路径和空速。首要任务是即使在饱和推力期间也要将空速保持在 HALE 飞机的小飞行包线内。对于基本路径跟踪目标,提出了一种混合灵敏度方法,可以轻松处理解耦跟踪和鲁棒性要求。为了处理饱和控制输入,在控制设计中采用了防饱和方案。使用了一种基于观察者的新型混合灵敏度设计,允许直接使用基于反计算的经典防饱和方法。该控制设计在非线性模拟中得到验证,并与基于经典总能量控制的控制器进行了比较。
随着人工智能生成的文本越来越像人类书写的内容,检测机器生成文本的能力变得至关重要。为了应对这一挑战,我们提出了 GPTWatermark,这是一种强大而高质量的解决方案,旨在确定一段文本是否源自特定模型。我们的方法扩展了现有的水印策略,并采用固定组设计来增强对编辑和释义攻击的鲁棒性。我们表明,我们的带水印的语言模型在生成质量、检测正确性和针对规避攻击的安全性方面享有强有力的可证明保证。在各种大型语言模型 (LLM) 和不同数据集上的实验结果表明,我们的方法实现了卓越的检测准确率和可比的复杂度生成质量,从而促进了 LLM 的负责任使用。代码可在 https://github. com/XuandongZhao/GPTWatermark 获得。
人类和机器都使用语音识别系统。各种研究人员已经开发了许多语音识别系统。例如语音识别、说话人验证和说话人识别。语音识别系统的基本阶段是预处理、特征提取、特征选择和分类。已经进行了大量工作来改进所有这些阶段以获得准确和更好的结果。本文主要关注在语音识别系统中添加机器学习。本文介绍了 ASR 的架构,有助于了解语音识别系统的基本阶段。然后重点介绍了机器学习在 ASR 中的应用。本文的一部分还介绍了各种研究人员使用支持向量机和人工神经网络所做的工作。除了这篇评论外,还介绍了使用 SVM、ELM、ANN、朴素贝叶斯和 kNN 分类器所做的工作。模拟结果表明,使用 ELM 分类器可实现最佳准确度。本文的最后一部分介绍了使用所提出的方法获得的结果,其中使用了 SVM、带有 Cuckoo 搜索算法的 ANN 和带有反向传播分类器的 ANN。重点还在于改进预处理和特征提取过程。
摘要 — 我们提出了一种新的混合系统,使用多目标遗传算法在灰度图像上自动生成和训练量子启发分类器。我们定义了一个动态适应度函数,以获得最小的电路和对看不见的数据的最高准确度,确保所提出的技术具有通用性和鲁棒性。我们通过惩罚它们的出现来最小化生成的电路在纠缠门数量方面的复杂性。我们使用两种降维方法来减小图像的大小:主成分分析 (PCA),它在个体中编码以进行优化,以及一个小型卷积自动编码器 (CAE)。将这两种方法相互比较并与经典的非线性方法进行比较,以了解它们的行为并确保分类能力归因于量子电路而不是用于降维的预处理技术。