摘要γ-氨基丁酸(GABA)是一种非肽氨基酸发射器,是现代神经药理学的主要组成部分,也是一般麻醉和治疗药物的最关键靶点部位之一。GABA A型受体(GABA A RS)是中枢神经系统中最丰富的抑制性神经递质受体。它们是快速作用的配体门控离子通道(LGIC)受体类别的一部分,这是一种五个五型cys-loop超家族,可介导成熟大脑中的抑制性神经传递。gaba a RS主要由两个α亚基,两个β亚基和一个来自中央氯化物(Cl-)选择性通道的d的另外一个亚基组成。已确定了多个GABA A R亚基亚型和剪接变体。GABA A R的每个变体都表现出不同的生物物理和药理特性。几种化合物会对GABA A r积极或负面调节。广泛使用的阳性GABA A R调节剂包括苯二氮卓类药物(抗焦虑和抗惊厥药),全一麻醉药(如尿素等挥发性剂,以及巴比妥类药物等静脉内药物,如抗苯甲酸酯和丙泊屈球和丙泊屈球),一些抗凝胶酒精,一些抗脉冲,抗脉冲和神经剂,并具有神经性的剂。每种药物的结合位点截然不同。麻醉药物增强了受体介导的突触传播,从而打断了丘脑皮层传播,从而控制了睡眠 - 唤醒模式。理解GABA A R为在治疗神经系统疾病和全身麻醉方面开发高度特定的药物奠定了基础。GABA A R功能的异常已与几种神经疾病有关,例如睡眠障碍,癫痫发作,抑郁,认知功能,受伤后的神经系统恢复和神经可塑性。
摘要。在本文中,我们通过在一组局部相似性措施上最小化促进平滑度的函数,以比较给定图像的平均值以及在大量子框上比较一些候选图像,从而确定了给定的嘈杂图像。相关的凸优化问题具有大量的约束,这些约束是由kullback-leibler差异引起的扩展实现功能引起的。另外,这些非线性约束可以被重新重新构成AFFINE,这使该模型看起来更加易于处理。用于对模型的两种公式的数值处理(即原始限制和具有限制的原始公式),我们提出了一种相当普遍的增强拉格朗日方法,能够处理大量约束。提供了一种独立的,无衍生的全球融合理论,可以扩展到其他问题类别。对于在我们建议的图像denoising模型的设置中解决所得子问题的解决方案,我们使用合适的随机梯度方法。为了比较配方和相关的增强拉格朗日方法,提出了几个数值实验的结果。
在特定区域选择性释放药物将使许多科学和医学领域受益。聚焦超声激活的纳米颗粒药物载体(远程应用的深度穿透能量)可以提供此类选择性干预。在这里,我们开发了稳定的超声响应纳米颗粒,可用于在非人类灵长类动物中有效安全地释放药物。纳米颗粒用于在深层大脑视觉区域释放丙泊酚。释放可逆地调节受试者的视觉选择行为,并且特定于目标区域和释放的药物。钆增强磁共振成像显示血脑屏障完好无损。抽血显示临床化学和血液学正常。总之,这项研究提供了一种安全有效的方法,可以在选定的深层大脑区域按需释放药物,其水平足以调节行为。
创伤性脑损伤 (TBI) 是导致成人死亡和残疾的主要原因之一。在严重 TBI 病例中,通过控制急性期颅内高压来预防继发性脑损伤是一项关键的治疗挑战。在控制颅内压 (ICP) 的外科和医疗干预措施中,深度镇静可以为患者提供舒适感,并通过调节脑代谢直接控制 ICP。然而,镇静不足无法达到预期的治疗目标,而镇静过度则会导致致命的镇静相关并发症。因此,通过测量适当的镇静深度来持续监测和滴定镇静剂非常重要。在本综述中,我们讨论了深度镇静的有效性、监测镇静深度的技术以及推荐的镇静剂、巴比妥类药物和丙泊酚在 TBI 中的临床应用。
在分析化学和各种药物领域的摘要中,分离技术被广泛用于研究混合物或复杂材料的特定化合物。一种这样的分离技术称为色谱。开发并验证了一种简单,快速且具有成本效益的TLC方法,用于定量确定药物和化妆品中的甲基对位替替替替替补替替替补替替替越。该方法采用了一个由乙酸乙酯 - 甲醇 - 水(80:10:10,v/v/v)组成的流动相,并显示出良好的线性(R2> 0.99),准确性(恢复95-105%),精度(RSD <2%)和特异性。检测和定量的极限分别为0.1μg和0.5μg。此TLC方法可用于质量控制和监管目的。关键字:薄层色谱,甲基对羟基苯甲酸酯,丙泊替户,定量测定,防腐剂。
我们研究的目的是在回顾性图表综述中评估氯氮平在耐治疗精神分裂症中的甲脂蛋白增强的效率。在916例精神分裂症患者的病历中,我们确定了12个人在3 - 60周期间用这些药物组合的人[中位数32(10-40)]。临床全球印象 - 改善(CGI-I)得分用于衡量氯氮平甲虫增强的引入和观察点之间的治疗反应。大多数患者在治疗4 - 16周后表现出治疗反应(9/12例,75%)[中位数6(4-12)]。治疗与正,阴性,情感和焦虑症状严重程度以及患者全球功能的改善有关。一名患者因副作用(Akathisia)而停止治疗,两名患者因精神病症状加剧而停止了治疗。我们的研究介绍了在“现实世界”环境中使用氯氮平的逆特雷嗪增强药物治疗的耐治疗精神分裂症患者的详尽临床描述。我们的结果表明,这种组合的使用可能会导致这种情况患者的广泛症状的改善。
在特定区域选择性释放药物将使许多科学和医学领域受益。通过聚焦超声(远程应用的深度穿透能量)激活的纳米颗粒药物载体可提供此类选择性干预。在这里,我们开发了稳定的、超声响应的纳米颗粒,可用于在非人类灵长类动物中有效和安全地释放药物。纳米颗粒用于在深层大脑视觉区域释放丙泊酚。释放可逆地调节受试者的视觉选择行为,并且特定于目标区域和释放的药物。钆增强 MRI 成像显示血脑屏障完好无损。血液抽取显示正常的临床化学和血液学。总之,这项研究提供了一种安全有效的方法,可以在选定的深层大脑区域按需释放药物,其剂量足以调节行为。
利托那韦 (RTV) 增强的 PIs BUP:RTV 增强的 PIs 可能会大大增加 BUP 浓度,但其临床意义尚不清楚,因为 BUP 剂量是基于临床阿片类药物戒断量表的。
血管炎是一组自身免疫性疾病,其特征是血管壁发炎。受影响的血管尺寸,类型和位置决定了特定类型的血管炎。血管炎可以作为主要过程或继发另一种潜在疾病的主要过程[4]。各种形式的血管炎之一是抗中性粒细胞胞质抗体(ANCA)相关的血管炎(AAV),其特征在于存在ANCAS [5,6]。ANCA是针对多核中性粒细胞和单核细胞颗粒中酶的自身抗体。ANCA主要针对酶蛋白激酶3(PR3)或髓过氧化物酶(MPO)[7]。PR3位于细胞质中,而MPO围绕核。间接免疫荧光(IFF)测试用于确定存在哪些ANCA,突出显示与肉芽肿性炎性炎(PGA或CHURG Strauss综合征)与肉芽肿性相关的细胞质ANCA(C-ANCA),与perinucic(MPA)或perinucial comaint(PGA或Churg strauss综合征)(PGA或Churg strauss综合征)(PGA)(MPA)或perinuciel ANCA(P-PA)(PGA)多血管炎(EGPA或Wegener病)[7]。ANCA还与其他自身免疫性疾病(如类风湿关节炎)相关[8],这与该IFF检测无法区分。因此,需要另外的酶连接的免疫吸附测定法(ELISA)来确认指示。AAV会影响中小血管,可能损害几个器官[9,10]。
证据表明,意识流被解析为瞬态大脑状态,这些状态表现为全局神经元活动的离散时空模式。脑电图 (EEG) 微状态被认为是这些持续几分之一秒的瞬态稳定大脑状态的神经生理学关联。为了进一步了解 EEG 微状态动态与意识之间的联系,我们连续记录了 23 名外科患者从清醒状态到昏迷状态的高密度 EEG,这些患者由静脉麻醉剂丙泊酚的浓度逐步增加而引起。除了微状态动力学的常规参数外,我们还介绍了一种估计微状态序列复杂性的新方法。手术麻醉下的大脑活动显示典型微状态的序列复杂性降低,变得更稀疏且持续时间更长。然而,我们观察到,随着镇静深度的增加,微状态的时间动态和复杂性最初有所增加,导致出现明显的“U 形”,这可能与中等剂量异丙酚引起的反常兴奋有关。我们的研究结果支持以下观点:大脑在正常情况下处于亚稳态,在有序和混乱之间保持平衡,以便灵活地从一种状态切换到另一种状态。EEG 微状态的时间动态表明,这种稳定性和过渡性之间的关键平衡发生了变化,从而导致意识状态改变。