欧盟最近禁止使用氯苯胺灵 (CIPC)(委员会实施条例 (EU) 2019/989),这促使马铃薯加工行业寻找替代且更安全的抗发芽方法。低温(即 4°C)储存已成为在不使用 CIPC 的情况下长期储存马铃薯的有效选择。然而,大多数商业马铃薯品种在冷藏过程中会积累高水平的还原糖 (RS),这种现象称为冷诱导甜化 (CIS)。在将马铃薯高温加工成薯片和炸薯条等产品的过程中,RS 会与天冬酰胺和肽发生反应生成神经毒素丙烯酰胺,加工产品会呈现棕色至黑色(Bhaskar 等人,2010 年)。图 1a 以图形方式描述了马铃薯储存的挑战。由于培育抗 CIS 的马铃薯品种来取代易感 CIS 的品种十分困难,新基因组技术 (NGT) 正成为一种有用的方法,可快速将抗 CIS 特性引入加工行业使用的商业品种中。尽管基于 CRISPR 的方法可以灵活地针对植物基因组中的任何选定序列,但迄今为止,该技术主要用于针对植物中的蛋白质编码序列。在本研究中,我们利用编辑 5' UTR 序列来改造业界首选的马铃薯品种的 CIS 抗性。液泡转化酶 (VInv) 已被确定为将蔗糖转化为 RS 的关键酶。先前的研究表明,沉默 VInv 基因是降低马铃薯冷藏后 RS 积累的一种合适方法 (Bhaskar 等人,2010 年;Zhu 等人,2016 年)。
摘要:小麦是一种主食,在全球范围内消耗是淀粉和蛋白质的主要来源。近年来,全球小麦的摄入量有所增加,总体而言,小麦被认为是健康食品,尤其是在用全谷物制成产品时。然而,通常通过烘烤和/或烤面包在食用之前几乎总是对小麦进行处理,这可能导致形成有毒加工污染物的形成,包括丙烯酰胺,5-羟基甲基甲基膜(HMF)(HMF)和多环状芳族芳族芳族氢碳酸盐(PAHS)。丙烯酰胺主要由自由(可溶性,非蛋白质)天冬酰胺形成,并在Maillard反应中减少糖(葡萄糖,果糖和麦芽糖),并分类为2A组致癌物(可能与人类的致癌物)。它还具有高剂量的神经毒性和发育作用。HMF也是在Maillard反应中产生的,但也可以通过果糖或焦糖化的脱水来形成。经常在面包,饼干,饼干和蛋糕中发现。其分子结构指向遗传毒性和致癌风险。pah是一大类化合物,其中许多是遗传毒性,诱变,致伤性和致癌性。它们主要是由于有机物的不完全燃烧而在油炸,烘烤和烧烤期间形成的。可以随着食谱和加工参数的变化以及有效的质量控制措施而降低这些加工污染物的生产。但是,在丙烯酰胺和HMF的情况下,它们的形成也高度取决于谷物中前体的浓度。在这里,我们回顾了这些污染物的综合,影响其生产的因素以及可以采取的缓解措施以减少小麦产品中的形成,重点是遗传学和农学的作用。我们还审查了全球食品安全部门通过的风险管理措施。
摘要:大多数儿科癌症对高度化学敏感,细胞毒性化学疗法一直是治疗的支柱。蒽环类药物对大多数类型的儿童癌具有非常有效的效果,例如神经母细胞瘤,肝母细胞瘤,肾细胞瘤,横纹肌肉瘤,尤因肉瘤等。然而,急性和慢性心脏毒性是邻苯二酚使用的主要缺点之一,限制了它们的效用和有效性。羟丙基丙烯酰胺聚合物共轭多吡霉素(P-THP),该聚合物通过增强的渗透性和保留效应(EPR)效应高度选择性地靶向肿瘤组织,其次是在肿瘤周围迅速释放活性多吡霉素分子进入酸性环境。,尽管后者很少发生在正常组织周围的非酸性环境中。这种机制有可能最大程度地减少包括心脏毒性在内的急性和慢性毒性,并通过与活性分子的肿瘤靶向积累和可能的剂量升级的协同作用来最大程度地提高化学疗法的效率。仅在给定方案中用P-THP代替阿霉素可以改善对蒽环类敏感的小儿癌的预后,而诸如心脏毒性等不良风险的风险很小。作为癌症是一种动态疾病,在其过程中显示出肿瘤内异质性,因此必须持续平行细胞毒性剂和分子靶向剂,才能发现潜在的更有效的治疗方法。
DOI: https://dx.doi.org/10.30919/es1260 Polymerization Dynamics of Zwitterionic Monomers with Polyacrylamide for Enhanced Oil Recovery Gulim Imekova, 1, 2 Damir Karimov, 3 Nurxat Nuraje 3 and Zhexenbek Toktarbay 1,* Abstract In this paper, the synthesis of zwitterionic详细研究了用于增强石油回收(EOR)的共聚物。通过自由基共聚合合成共聚物。不同的摩尔比(2:98,10:90,20:80,30:70)的s翼sulfobetaine-n-(3-二甲基氨基)丙烯酰胺(P(SB-DMAPMA))与丙烯酰胺(AM)共聚。导致以核磁共振(NMR)和傅立叶变换红外光谱(FTIR)为特征的共聚物。用静态光散射方法测量共聚物的分子量。使用三种方法计算单体的反应性比:Fineman-Ross,Kelen Tudos和Mayo-Lewis。该研究还讨论了纯净水和纯净水中的际离子共聚物和流变特性的热稳定性,并在具有不同电荷的高含量条件下。通过流变测量分析添加不同盐后的粘度增加,分子结构的图像是通过传输电子显微镜(TEM)拍摄的。这项研究的发现对于提高EOR过程的效率很有用,为更先进的石油回收技术铺平了道路。
新的基因组技术(NGT)也用于改善农作物的营养价值(质量特征)。目标是增加维生素,重要营养素和微量营养素的含量。的例子是米饭,具有更多的铁,大豆,具有更高比例的健康油酸,以及瓜,大米和香蕉,含量更高的维生素A。将来,这些植物也可以促进许多国家的重要营养素(“隐藏饥饿”)的猖support,从而改善了营养和保健性的健康和健康。,但也可以减少不良成分,例如小麦含量减少的麸质含量或土豆,其中较少的致癌丙烯酰胺会产生[7]。
污染物检测需要非常灵敏且具有选择性的仪器和方法,例如色谱法和质谱法。色谱法可以分离分子以识别特定分子(选择性),而质谱仪则可以检测微量物质(低至十亿分之一)。Cotecna 实验室配备了创新技术,可以检测食品中的各种污染物,例如:> 农药残留> 霉菌毒素> 重金属> 工艺污染物(3-MCPD、丙烯酰胺、呋喃等)> 持久性有机污染物(持久性有机污染物、异丙醇、二恶英、多氯联苯等)> 药物> MOSH/MOAH(矿物油的饱和烃或芳香烃)> PFAS/PFOS(全氟和多氟烷基物质,它们是环境中的持久性污染物,可以迁移到食品和饲料中)。
图1:示例激活的油脂和靶向共价抑制剂(TCIS)。a)活化的ol填充物的结构。单一或双重激活的油脂是指用一个或两个吸电子基团(EWG)取代的α取代。发生了硫醇添加的β碳,用星号表示。b)示例单激活(15)和双重激活(1)olefins。丙烯酰胺组被一个虚线的盒子突出显示。c)EGFR前袋的缩放视图(在表面渲染中),其中Afatinib共价连接到C797。附近的天冬氨酸D800也标有标签。下面给出了三个FDA批准的EGFR TCI的结构(红色框)。监管批准年份在括号中。
离子热电材料由于其高灵活性和高seebeck系数而引起了人们的关注。然而,它们的不良热电性能和长期处理限制了其实际应用。为了实现异国情调的热电材料,在这里,氧化石墨烯(GO)修饰的丙烯酰胺离子凝胶的设计具有高热电性能和功能高。详细的结构特征证实了Ionogel结构中GO颗粒的均匀分散剂使功率因数为753.0μWm -1 K -2,有希望的ZT值为0.19。此外,准备好的离子热电薄膜表现出极好的功能,可伸缩性和自粘性。由准备的IonogeLefms组装的集成设备可以产生1.32 mW cm-2的最佳输出功率密度,温度差异为20 K,这表明可穿戴电子设备的潜力很大。这项工作为搜索长期,高性能离子热电材料提供了见识。
摘要:能够对多种外界刺激作出反应的多响应性聚合物是具有多种应用前景的材料。本文介绍了一种通过聚甲基丙烯酸甲酯 (PMMA) 的后聚合酰胺化来合成三重响应性(pH、温度、CO 2 )聚(N,N-二乙基氨基乙基甲基丙烯酰胺)的简便方法。与三价反离子([Fe(CN) 6 ] 3 @ )结合,在 pH 为 8 和 9 时都可以实现上限和下限临界溶液温度 (UCST/LCST) 型相行为。PMMA 和基于 PMMA 的嵌段共聚物可通过活性阴离子和受控自由基聚合技术轻松获得,这为基于所开发的功能化方法的各种响应性聚合物结构开辟了道路。该方法还可应用于熔融加工的块状 PMMA 样品,以在 PMMA 表面引入功能性响应部分。
图 7:已证明丙烯酰胺 (ACR) 对实验室动物和人类均有神经毒性。根据 Hanaa 等人 31 的研究,合成了具有有前景的杂环部分的新型功能化褪黑激素化合物,预计它们将在成年雌性大鼠中对 ACR 诱导的神经毒性表现出保护作用。单独使用 ACR (50 mg/kg/b.wt.) 后,大脑的丙二醛水平 (MDA) 和乳酸脱氢酶 (LDH) 活性显著升高,而单胺水平和抗氧化酶活性显著降低。在 ACR 之前,用褪黑激素衍生物 11 (ip,50 mg kg-1 b. wt.) 治疗导致大脑 MDA 水平和 LDH 活性显著降低,同时大脑单胺水平和抗氧化酶活性显著升高。