微凝胶的多孔结构显着影响其特性,因此,它们适合各种应用,尤其是作为组织sca of的构件。孔隙度是微凝胶 - 细胞相互作用的关键特征之一,显着增加了细胞的积累和增殖。因此,以无效的方式调整微凝胶的孔隙率很重要,但仍然具有挑战性,尤其是对于非球形微凝胶而言。这项工作提出了一种直接的程序,以使用在微凝胶聚合过程中使用所谓的共抗效应来制造复合形的聚(N-异丙基丙烯酰胺)(PNIPAM)微凝胶。因此,在停止流动过程中,反应溶液中的经典溶剂从水到水 - 乙醇混合物交换。对于制造过程中甲醇含量较高的圆柱形微凝胶,观察到更大程度的崩溃,其长宽比增加。此外,随着甲醇含量的变化而崩溃和肿胀的速度变化,表明经过修改的多孔结构,由电子显微镜显微镜确认。此外,在冷却过程中会发生微凝胶变体的肿胀模式,从而揭示其热反应是高度异质过程。这些结果表明了一种新的程序,可以通过在定位光刻聚合过程中引入共溶性效应来制造任何细长的2D形状的PNIPAM微凝胶,并具有量身定制的多孔结构和热回应性。
丁酸酯是一种关键的细菌代谢产物,在调节上皮屏障的免疫和维持中起重要而复杂的作用。其转化为诊所的限制受生物利用度,刺激性的气味以及对高剂量的需求以及有效的分娩策略的需求,尚未实现临床潜力。这里是一个新型的聚合物输送平台,用于可调节且可持续的丁酸酯释放,由甲基丙烯酰胺主链与丁酰胺酯或苯基酯侧链以及甘露糖基侧链组成,该链也适用于其他治疗疗法相关的代谢物。探索了该平台在治疗非治疗糖尿病伤口方面的效用。这种含丁酸酯的材料在体外调节了免疫细胞的活化,并引起了可溶性细胞因子和趋化因子信号的惊人变化。这种新颖的疗法通过调节伤口中存在的可溶性信号来治疗非治疗伤口的效率,并且重要的是适应与伤口愈合过程有关的关键时间调节。目前,解决非愈合伤口的少数疗法表明效应有限。这个新颖的平台定位,可以解决这种巨大的未满足的临床需求,并改善其他非污染伤口的闭合。
摘要:在三十多年来,基于肿瘤选择性治疗实体瘤的渗透性和保留率(EPR)效应的纳米医学已受到了很大的关注。然而,由于肿瘤或栓塞性肿瘤血管,晚期癌症的治疗仍然是一个巨大的挑战,这导致了EPR效应的所谓异质性。我们先前使用一氧化氮供体和其他称为EPR效应增强子的药物来恢复血管中血管中血流受损的方法。在这里,我们表明,两个新型的EPR效应增强剂 - 异端二硝酸盐(ISDN,Nitrol®)和Sildena fi柠檬酸盐 - 将三种大分子分子药物递送至肿瘤:聚(造型(造型(造型))(造型 - co-maleic Acid)(Sma)和cisplatin,smaplatin,smaplatin,smaplatin;聚(N-(2-羟丙基)甲基丙烯酰胺)聚合物共轭锌原磷脂(光动力疗法和成像);和SMA葡萄糖胺 - 偶联的硼酸络合物(硼中子捕获疗法)。我们在患有晚期C26肿瘤的小鼠中测试了这些纳米果。当这些纳米医学与ISDN或Sildena-Fil一起施用时,肿瘤递送,因此阳性治疗结果在直径为15 mm或更多的肿瘤中增加了2至4倍。这些结果证实了使用EPR效应增强子恢复肿瘤血流的基本原理。总而言之,所有测试的EPR效应增强剂均显示出在癌症治疗中应用的巨大潜力。
摘要TGA-EGA技术用于研究磺基酸(SA)对由甲基丙烯酰胺,divinylbenzene和Trimethoxyvinylane组成的杂化型特里群前体的碳化过程的影响。在N 2大气下,原始聚合物用SA的饱和溶液在600°C下浸渍。原始混合聚合物和所得碳的特征性能均基于FTIR,Raman和PXRD分析,该分析表明材料是由硅/硅酸盐无序网络互穿的非晶聚合物或碳相组成的。孔隙法分析表明,与原始前体相比,所得的碳具有均匀的超级气孔,平均孔隙宽度为0.7 nm,中孔数量减少。从TGA结果中,遵循浸渍的聚合物在两个阶段分解的浸渍,而不是像原始前体那样。此外,浸渍聚合物的IDT减少了约100°C,其T最大增加了2-5.5°C。他们的分解速度较慢22-37%,这导致该过程的效率提高了10-48%。EGA显示出浸渍前体的分解位置是从酰胺基团的降解开始的,然后发生了SA破坏,然后进一步分解了聚合物。研究得出的结论是,SA对碳化聚合物的表面具有保护作用。在浸渍和热处理期间,SA在前体的毛孔中产生沉积物。这导致孔宽度缩小,延迟和减慢聚合物热分解过程,并提高其效率。
微胶囊允许从药物到香水的货物的控制,运输和释放。鉴于微胶囊和其他核心壳结构的各种行业的兴趣,存在多种制造策略。在这里,我们报告了一种依赖温度响应性微凝胶颗粒,聚(N-异丙基丙烯酰胺)(PNIPAM)的混合物和经历流体流体相分离的聚合物的混合物。在室温下,该混合物分离成富含胶体的(液体)和胶体贫困(气体)流体。通过在临界温度上加热样品,其中微凝胶颗粒会急剧收缩并产生更深刻的颗粒室内电势,富含胶体相的液滴变成类似凝胶的液滴。随着温度降低到室温,这些凝胶胶体颗粒的这些液滴会在液滴中重新和相位分离。这种相分离会导致胶体富含胶体的液滴中的胶体贫穷的液滴,并被连续的胶体贫穷相包围。气体/液体/气体全水乳液仅在大多数内液滴逸出前仅几分钟。但是,核壳液滴的胶壳可以通过添加盐来固化。这种方法使用仅使用水性成分的刺激敏感的微凝胶胶体颗粒组成的壳形成核心壳结构,使其对封装生物材料和制造胶囊的胶囊有吸引力,以响应例如温度,盐浓度或pH的变化。
1.2缩写和解决方案在:AA丙烯酰胺(戴手套)实验室3030 71 20 mm = 1.4毫克/毫升200 mm = 14 mg/ml水acni乙腈实验室3030 ABC氨基苯甲酸盐Bicarbonate Lab 3030 79 50 mm = 0.2 g/50 ml 2 ml 2 mm = 0.2 g/amm = 0.16 g.2 g/amm = 0.16 666666666 666666 666666 6666666666 6666 6666666666666 66666666 6666666616醋酸盐实验室3030 77 10 mm = 38.5 mg/50毫升水cystein fluka 30090,> 99%实验室3030 121 125 mm = 15 mg/ml 200 mm = 24 mg/ml水DTT DTT DTT DITHIOTOITOL(4C)新鲜!(recrig)154 20 mm = 3.1 mg/ml 150 mm = c水IAA IODOACETAMIDE(4 c)新鲜!(recrig)185 20 mm = 3.7 mg/ml 200 mm = 37 mg/ml水TFA TRIFLUORO-乙酸实验室3030安全橱柜MS Sutmer MS Sutm in in Fume Cupboard只有TCEP TRIS(羧乙基)磷酸-20 phosphine-20C287 100 mm = 29 mm = 29 mg/ml Water tris tris tris tris tris tris 10*。pH 8带HCl称重室121 1 m = 121 g/l 6.0 g/50 ml水
(µg/cm 2 /min) 1-丁醇 (99) 192.1 1.2 179 3.2 丙烯酰胺 (40) >480 0.07 >480 0.01 氯仿 (70) 0 — 0 — 柠檬酸 (70) >480 <1.0 >480 <1.0 柠檬酸一水合物 (30) >480 N/A >480 N/A 环己烷 (99.7) 52.5 9.6 >480 0.8 二甲基甲酰胺 (99) 0 — 0 — 二甲基亚砜 (99) 5.5 — 10.6 — 乙醇 (70) 27.6 16 43.8 11.6 乙醇 (99) 18.7 5.20E+01 32.1 73.8 乙锭溴化物 (1) >480 N/A >480 N/A 甲醛 (37) >480 N/A >480 N/A 戊二醛 (50) >480 N/A >480 N/A 一水合肼 (55) >480 0.08 >480 N/A 盐酸 (30) >480 N/A >480 N/A 过氧化氢 (30) 36 1.4 78.7 0.8 异丙醇 (70) 194 1.7 185 2.6 异丙醇 (99) 361 1.2 280.2 1.4 Klercide 70/30 IPA (N/A) 141 2 163.7 2.2 Klericide 中性清洁剂 (N/A) >480 N/A >480 N/A Klericide 杀孢子剂活性氯 (N/A) >480 N/A >480 N/A 甲醇 (99) 1.2 57.6 9 50.7 硝酸 (65) 15 8.90E+04 25.4 3.60E+04 过氧乙酸 (5) >480 N/A >480 N/A 磷酸 (70) >480 <1.0 >480 <1.0 氢氧化钠 (50) >480 N/A >480 N/A 次氯酸钠 (10-13%) >480 N/A >480 N/A Spor-Klenz (N/A) >480 0.0043 >480 N/A 硫酸 (50) >480 N/A >480 N/A
我们通过有机金属介导的自由基聚合并(OMRP)合成了极性聚乙烯块共聚物(OMRP),使用甲基丙烯酸甲酯(MA),乙酸乙酸乙烯酸乙二醇(VAC)(VAC)(VAC)和自由基丙烯酰胺(DMA)和自由基丙烯酸乙烯甲基丙烯酸甲酯(MA)结合了受控的自由基聚合。使用CO(SALEN)允许聚合更广泛的单体范围,从较少活化的单体(LAM)S到更激活的单体(MAM)S,最后是水溶性的,非离子单体通过使用photonitiator的变性机制(2,4,4,4,6- trimethyltipip的封装)(themential syment of)紫外线照射。鉴于CO(SALEN)聚合物休眠物种可以同时进行退化转移和可逆的终止机制,因此,第一部分可以作为顺序自由基聚合的自由基宏观发射剂。一项自由基共聚研究评估了极性单体和乙烯的反应性,以及从极性节段传播乙烯的可行性,使用65°C下的50 bar下的反应条件在65°C下进行。重新开始效率在60-90%之间,范围在60-90%之间,取决于休眠聚合物。PMA -B -PE,PVAC -B -PE和PDMA -B -PE的嵌段共聚物平均包含0.03至0。17 F乙烯聚乙烯。微域的形成和相分离研究证实了块共聚物的形成。选择CO(SALEN)与光诱导的OMRP结合使用,提供了一种可行的方法,可以在单一类型的活性物种中获取有价值的极性聚乙烯嵌段共聚物,其单体表现出不同的反应性朝向传播和激活。
Southern印迹是一种用于将DNA从琼脂糖转移到膜的方法,因此可以分析DNA的组成特性,18北面的北印迹是南方的一种变体,用于RNA分析,19个蛋白质斑点用于将蛋白质从丙烯酰胺凝胶中转移到丙烯剂凝胶的范围,这是丙烯剂凝胶的24个植物,这是一个流行的24个杂种,这些杂物已被散布在一个数字上,这些象征的数量是杂物,这些象征的数量是杂种,这些象征的范围是数量的杂种,这些象征的数量均匀的象征,这些象征的范围是数量的杂种,这些象征的范围是杂种,这些象征的快速素质是杂种的范围。 to transform E. coli with DNA is an essential prerequisite for most experiments on gene manipulation, 24 Electroporation is a means of introducing DNA into cells without making them competent for transformation, 25 The ability to transform organisms other than E. coli with recombinant DNA enables genes to be studied in different host backgrounds, 25 The polymerase chain reaction (PCR) has revolutionized the way that biologists manipulate and analyze DNA, 26 The PCR的原理非常简单,27 RT-PCR使mRNA分子上的序列能够扩增为DNA,为DNA,28基本PCR在扩增长DNA片段方面并不有效,28 PCR实验的成功是非常取决于使用量的量子,而是使用量子的数量,是29的选择,是29的选择,2CR是2CR,2CR是2CR的选择,是2CR的选择,2CR是2CR的选择,2CR是2CR,2CR是2CR,2CR是2CC定量PCR反应中的荧光,31现在可以扩增整个基因组以及基因段,34
摘要:近几十年来,通过纳米材料共同输送化疗药物引起了广泛关注,因为它可以改善药物向肿瘤组织的输送,降低全身效应并提高治疗效果。高孔隙率、大孔体积和表面积以及可调节的结构使金属有机骨架 (MOF) 成为有前途的药物输送系统 (DDS)。特别是纳米级 Zr 连接的 MOF,例如 MOF-808,在生物医学应用方面具有显着优势,例如孔隙率高、稳定性好和生物相容性好。在本研究中,我们报告了装载在 MOF-808 纳米粒子中的氟尿苷 (FUDR) 和卡铂 (CARB) 向癌细胞的有效双重药物输送。纳米粒子进一步通过聚(丙烯酸-甘露糖丙烯酰胺)(PAAMAM)糖聚合物涂层进行功能化,以获得癌细胞中高度选择性的 DDS 并增强化疗的治疗效果。虽然发现 MOF-808 可以增强 FUDR 和 CARB 对癌细胞的单独治疗效果,但 FUDR 和 CARB 的结合会产生协同效应,进一步增强游离药物的细胞毒性。通过改进的激活方案可以增强 CARB 负载,从而增强 CARB 负载 MOF 的细胞毒性,而用 PAAMAM 糖聚合物涂覆 MOF-808 可以增加研究中使用的癌细胞对纳米颗粒的吸收,并在 HepG2 人肝细胞癌细胞中提供具有高细胞毒性的特别重要的选择性药物输送。这些结果表明,通过纳米载体输送和协同处理可以增强细胞毒性,并且 MOF-808 是未来药物输送研究的可行候选者。关键词:金属 - 有机骨架、糖聚合物、药物输送、癌症、协同、靶向、碳水化合物 ■ 简介